메뉴 건너뛰기




Volumn , Issue , 2014, Pages 594-603

Smoothed analysis of tensor decompositions

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; MATRIX ALGEBRA; MIXTURES; POLYNOMIALS;

EID: 84904369044     PISSN: 07378017     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2591796.2591881     Document Type: Conference Paper
Times cited : (151)

References (39)
  • 1
    • 69949186291 scopus 로고    scopus 로고
    • Identifiability of parameters in latent structure models with many observed variables
    • E. Allman, C. Matias and J. Rhodes. Identifiability of Parameters in Latent Structure Models with many Observed Variables. Annals of Statistics, pages 3099-3132, 2009.
    • (2009) Annals of Statistics , pp. 3099-3132
    • Allman, E.1    Matias, C.2    Rhodes, J.3
  • 2
    • 84873335281 scopus 로고    scopus 로고
    • A method of moments for mixture models and hidden Markov models
    • A. Anandkumar, D. Hsu and S. Kakade. A method of moments for mixture models and hidden Markov models. In COLT 2012.
    • (2012) COLT
    • Anandkumar, A.1    Hsu, D.2    Kakade, S.3
  • 3
    • 84904306345 scopus 로고    scopus 로고
    • A tensor spectral approach to learning mixed membership community models
    • A. Anandkumar, R. Ge, D. Hsu and S. Kakade. A Tensor Spectral Approach to Learning Mixed Membership Community Models. In COLT 2013.
    • (2013) COLT
    • Anandkumar, A.1    Ge, R.2    Hsu, D.3    Kakade, S.4
  • 5
    • 84877771041 scopus 로고    scopus 로고
    • A spectral algorithm for latent dirichlet allocation
    • A. Anandkumar, D. Foster, D. Hsu, S. Kakade, Y. Liu. A Spectral Algorithm for Latent Dirichlet Allocation. In NIPS, pages 926-934, 2012.
    • (2012) NIPS , pp. 926-934
    • Anandkumar, A.1    Foster, D.2    Hsu, D.3    Kakade, S.4    Liu, Y.5
  • 6
    • 84877781888 scopus 로고    scopus 로고
    • Provable ica with unknown gaussian noise, and implications for gaussian mixtures and autoencoders
    • S. Arora, R. Ge, A. Moitra and S. Sachdeva. Provable ICA with Unknown Gaussian Noise, and Implications for Gaussian Mixtures and Autoencoders. In NIPS, pages 2384-2392, 2012.
    • (2012) NIPS , pp. 2384-2392
    • Arora, S.1    Ge, R.2    Moitra, A.3    Sachdeva, S.4
  • 7
    • 84904289384 scopus 로고    scopus 로고
    • Bling signal separation in the presence of gaussian noise
    • M. Belkin, L. Rademacher and J. Voss. Bling Signal Separation in the Presence of Gaussian Noise. In COLT 2013.
    • (2013) COLT
    • Belkin, M.1    Rademacher, L.2    Voss, J.3
  • 8
    • 78751519918 scopus 로고    scopus 로고
    • Polynomial learning of distribution families
    • M. Belkin and K. Sinha. Polynomial Learning of Distribution Families. In FOCS, pages 103-112, 2010.
    • (2010) FOCS , pp. 103-112
    • Belkin, M.1    Sinha, K.2
  • 11
    • 0030588055 scopus 로고    scopus 로고
    • Full reconstruction of markov models on evolutionary trees: Identifiability and consistency
    • J. Chang. Full Reconstruction of Markov Models on Evolutionary Trees: Identifiability and Consistency. Mathematical Biosciences, pages 51-73, 1996.
    • (1996) Mathematical Biosciences , pp. 51-73
    • Chang, J.1
  • 12
    • 0028416938 scopus 로고
    • Independent component analysis: A new concept?
    • P. Comon. Independent Component Analysis: A New Concept? Signal Processing, pages 287-314, 1994.
    • (1994) Signal Processing , pp. 287-314
    • Comon, P.1
  • 13
    • 0033336275 scopus 로고    scopus 로고
    • Learning mixtures of gaussians
    • S. Dasgupta. Learning Mixtures of Gaussians. In FOCS, pages 634-644, 1999.
    • (1999) FOCS , pp. 634-644
    • Dasgupta, S.1
  • 14
    • 34249802620 scopus 로고    scopus 로고
    • Fourth-order cumulant-based blind identification of underdetermined mixtures
    • L. De Lathauwer, J Castaing and J. Cardoso. Fourth-order Cumulant-based Blind Identification of Underdetermined Mixtures. IEEE Trans. on Signal Processing, 55(6):2965-2973, 2007.
    • (2007) IEEE Trans. on Signal Processing , vol.55 , Issue.6 , pp. 2965-2973
    • De Lathauwer, L.1    Castaing, J.2    Cardoso, J.3
  • 15
    • 33746089899 scopus 로고    scopus 로고
    • PAC learning axis-aligned mixtures of gaussians with no separation assumption
    • J. Feldman, R. A. Servedio, and R. O'Donnell. PAC Learning Axis-aligned Mixtures of Gaussians with No Separation Assumption. In COLT, pages 20-34, 2006.
    • (2006) COLT , pp. 20-34
    • Feldman, J.1    Servedio, R.A.2    O'Donnell, R.3
  • 16
    • 0030422226 scopus 로고    scopus 로고
    • Learning linear transformations
    • A. Frieze, M. Jerrum, R. Kannan. Learning Linear Transformations. In FOCS, pages 359-368, 1996.
    • (1996) FOCS , pp. 359-368
    • Frieze, A.1    Jerrum, M.2    Kannan, R.3
  • 17
    • 84937840572 scopus 로고    scopus 로고
    • Fourier PCA
    • this proceedings
    • N. Goyal, S. Vempala and Y. Xiao. Fourier PCA. In STOC, 2014 (this proceedings).
    • (2014) STOC
    • Goyal, N.1    Vempala, S.2    Xiao, Y.3
  • 18
    • 0002740437 scopus 로고
    • Foundations of the parfac procedure: Model and conditions for an 'explanatory' multi-mode factor analysis
    • R. Harshman. Foundations of the PARFAC procedure: model and conditions for an 'explanatory' multi-mode factor analysis. UCLA Working Papers in Phonetics, pages 1-84, 1970.
    • (1970) UCLA Working Papers in Phonetics , pp. 1-84
    • Harshman, R.1
  • 19
    • 0001424792 scopus 로고
    • Tensor rank is np-complete
    • J. Håstad. Tensor Rank is NP-Complete. Journal of Algorithms, pages 644-654, 1990.
    • (1990) Journal of Algorithms , pp. 644-654
    • Håstad, J.1
  • 22
    • 84873361882 scopus 로고    scopus 로고
    • Learning mixtures of spherical gaussians: Moment methods and spectral decompositions
    • D. Hsu and S. Kakade. Learning Mixtures of Spherical Gaussians: Moment Methods and Spectral Decompositions. In ITCS, pages 11-20, 2013.
    • (2013) ITCS , pp. 11-20
    • Hsu, D.1    Kakade, S.2
  • 24
    • 77954731171 scopus 로고    scopus 로고
    • Efficiently learning mixtures of two gaussians
    • A. T. Kalai, A. Moitra, and G. Valiant. Efficiently Learning Mixtures of Two Gaussians. In STOC, pages 553-562, 2010.
    • (2010) STOC , pp. 553-562
    • Kalai, A.T.1    Moitra, A.2    Valiant, G.3
  • 25
  • 26
    • 48749101457 scopus 로고
    • Three-way arrays: Rank and uniqueness of trilinear decompositions
    • J. Kruskal. Three-way Arrays: Rank and Uniqueness of Trilinear Decompositions. Linear Algebra and Applications, 18:95-138, 1977.
    • (1977) Linear Algebra and Applications , vol.18 , pp. 95-138
    • Kruskal, J.1
  • 30
    • 78751527010 scopus 로고    scopus 로고
    • Setting the polynomial learnability of mixtures of gaussians
    • A. Moitra and G. Valiant. Setting the Polynomial Learnability of Mixtures of Gaussians. In FOCS, pages 93-102, 2010.
    • (2010) FOCS , pp. 93-102
    • Moitra, A.1    Valiant, G.2
  • 31
    • 34848926262 scopus 로고    scopus 로고
    • Learning nonsingular phylogenies and hidden markov models
    • E. Mossel and S. Roch. Learning Nonsingular Phylogenies and Hidden Markov Models. In STOC, pages 366-375, 2005.
    • (2005) STOC , pp. 366-375
    • Mossel, E.1    Roch, S.2
  • 32
    • 84893305245 scopus 로고    scopus 로고
    • Learning mixtures of arbitrary distributions over large discrete domains
    • Y. Rabani, L. Schulman and C. Swamy. Learning mixtures of arbitrary distributions over large discrete domains. In ITCS 2014.
    • (2014) ITCS
    • Rabani, Y.1    Schulman, L.2    Swamy, C.3
  • 34
    • 4243066295 scopus 로고    scopus 로고
    • Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time
    • D.A. Spielman, S.H. Teng. Smoothed Analysis of Algorithms: Why the Simplex Algorithm usually takes Polynomial Time. Journal of the ACM, pages 385-463, 2004.
    • (2004) Journal of the ACM , pp. 385-463
    • Spielman, D.A.1    Teng, S.H.2
  • 35
    • 70349684902 scopus 로고    scopus 로고
    • Smoothed analysis: An attempt to explain the behavior of algorithms in practice
    • D.A. Spielman, S.H. Teng. Smoothed Analysis: An Attempt to Explain the Behavior of Algorithms in Practice. Communications of the ACM, pages 76-84, 2009.
    • (2009) Communications of the ACM , pp. 76-84
    • Spielman, D.A.1    Teng, S.H.2
  • 36
    • 77955559162 scopus 로고    scopus 로고
    • Subtracting a best rank-1 approximation may increase tensor rank
    • A. Stegeman and P. Comon. Subtracting a Best Rank-1 Approximation may Increase Tensor Rank. Linear Algebra and Its Applications, pages 1276-1300, 2010.
    • (2010) Linear Algebra and Its Applications , pp. 1276-1300
    • Stegeman, A.1    Comon, P.2
  • 39
    • 0002790288 scopus 로고
    • Perturbation bounds in connection with singular value decompositions
    • P. Wedin. Perturbation Bounds in Connection with Singular Value Decompositions. BIT, 12:99-111, 1972.
    • (1972) BIT , vol.12 , pp. 99-111
    • Wedin, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.