메뉴 건너뛰기




Volumn 14, Issue 9, 2014, Pages 2605-2626

Bayesian network learning for natural hazard analyses

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; BAYESIAN ANALYSIS; EARTHQUAKE; FLOOD; HAZARD ASSESSMENT; LANDSLIDE; NATURAL HAZARD; UNCERTAINTY ANALYSIS;

EID: 84907919964     PISSN: 15618633     EISSN: 16849981     Source Type: Journal    
DOI: 10.5194/nhess-14-2605-2014     Document Type: Article
Times cited : (42)

References (47)
  • 3
    • 34247193527 scopus 로고    scopus 로고
    • Understanding uncertainty and reducing vulnerability: Lessons from resilience thinking
    • Berkes, F.: Understanding uncertainty and reducing vulnerability: lessons from resilience thinking, Nat. Hazards, 41, 283-295, doi:10.1007/s11069-006-9036-7, 2007.
    • (2007) Nat. Hazards , vol.41 , pp. 283-295
    • Berkes, F.1
  • 4
    • 69049120895 scopus 로고    scopus 로고
    • Bayesian Belief Network for Tsunami Warning Decision Support
    • Blaser, L., Ohrnberger, M., Riggelsen, C., and Scherbaum, F.: Bayesian Belief Network for Tsunami Warning Decision Support, Lect. Notes. Artif. Int., 5590, 757-768, doi:10.1007/978-3-642-02906-6-65, 2009.
    • (2009) Lect. Notes. Artif. Int. , vol.5590 , pp. 757-768
    • Blaser, L.1    Ohrnberger, M.2    Riggelsen, C.3    Scherbaum, F.4
  • 7
    • 0037343925 scopus 로고    scopus 로고
    • Simulation of ground motion using the stochastic method
    • Boore, D.: Simulation of ground motion using the stochastic method, Pure Appl. Geophys., 160, 635-676, 2003.
    • (2003) Pure Appl. Geophys. , vol.160 , pp. 635-676
    • Boore, D.1
  • 9
    • 2542465947 scopus 로고    scopus 로고
    • On inclusion-driven learning of Bayesian networks
    • Castelo, R. and Kocka, T.: On inclusion-driven learning of Bayesian networks, J. Mach. Learn. Res., 4, 527-574, 2003.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 527-574
    • Castelo, R.1    Kocka, T.2
  • 10
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • Chickering, D. M.: Optimal structure identification with greedy search, J. Mach. Learn. Res., 3, 507-554, 2002.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 11
    • 77955890252 scopus 로고    scopus 로고
    • Influence of flood frequency on residential building losses
    • Elmer, F., Thieken, A. H., Pech, I., and Kreibich, H.: Influence of flood frequency on residential building losses, Nat. Hazards Earth Syst. Sci., 10, 2145-2159, doi:10.5194/nhess-10-2145-2010, 2010.
    • (2010) Nat. Hazards Earth Syst. Sci. , vol.10 , pp. 2145-2159
    • Elmer, F.1    Thieken, A.H.2    Pech, I.3    Kreibich, H.4
  • 13
    • 0001586968 scopus 로고    scopus 로고
    • Learning belief networks in the presence of missing values and hidden variables
    • July 1997 Nashville, TN 125-133
    • Friedman, N.: Learning belief networks in the presence of missing values and hidden variables, Fourteenth International Conference on Machine Learning, July 1997, Nashville, TN, 125-133, 1997.
    • (1997) Fourteenth International Conference on Machine Learning
    • Friedman, N.1
  • 17
    • 33750472678 scopus 로고    scopus 로고
    • Spatially explicit avalanche risk assessment linking Bayesian networks to a GIS
    • Grêt-Regamey, A. and Straub, D.: Spatially explicit avalanche risk assessment linking Bayesian networks to a GIS, Nat. Hazards Earth Syst. Sci., 6, 911-926, doi:10.5194/nhess-6-911-2006, 2006.
    • (2006) Nat. Hazards Earth Syst. Sci. , vol.6 , pp. 911-926
    • Grêt-Regamey, A.1    Straub, D.2
  • 20
    • 84892987312 scopus 로고    scopus 로고
    • Landslide Prediction from Machine Learning
    • Korup, O. and Stolle, A.: Landslide Prediction from Machine Learning, Geol. Today, 30, 26-33, 2014.
    • (2014) Geol. Today , vol.30 , pp. 26-33
    • Korup, O.1    Stolle, A.2
  • 21
    • 84855347368 scopus 로고    scopus 로고
    • Without power? Landslide inventories in the face of climate change
    • Korup, O., Gorum, T., Hayakawa, Y.: Without power? Landslide inventories in the face of climate change, Earth Surf. Proc. Land., 37, 92-99, 2012.
    • (2012) Earth Surf. Proc. Land. , vol.37 , pp. 92-99
    • Korup, O.1    Gorum, T.2    Hayakawa, Y.3
  • 23
    • 69549135599 scopus 로고    scopus 로고
    • Deriving empirical ground-motion models: Balancing data constraints and physical assumptions to optimize prediction capability
    • Kuehn, N., Scherbaum, F., and Riggelsen, C.: Deriving empirical ground-motion models: Balancing data constraints and physical assumptions to optimize prediction capability, B. Seismol. Soc. Am., 99, 2335-2347, 2009.
    • (2009) B. Seismol. Soc. Am. , vol.99 , pp. 2335-2347
    • Kuehn, N.1    Scherbaum, F.2    Riggelsen, C.3
  • 24
    • 79251625936 scopus 로고    scopus 로고
    • Modeling the joint probability of earthquake, site, and ground-motion parameters using Bayesian networks
    • Kuehn, N. M., Riggelsen, C., and Scherbaum, F.: Modeling the joint probability of earthquake, site, and ground-motion parameters using Bayesian networks, B. Seismol. Soc. Am., 101, 235-249, 2011.
    • (2011) B. Seismol. Soc. Am. , vol.101 , pp. 235-249
    • Kuehn, N.M.1    Riggelsen, C.2    Scherbaum, F.3
  • 25
    • 69049105331 scopus 로고    scopus 로고
    • Parameter estimation in mixtures of truncated exponentials
    • 17-19 September 2008, Hirtshals, Denmark
    • Langseth, H. and Nielsen, T. D.: Parameter estimation in mixtures of truncated exponentials, 4th EuropeanWorkshop on Probabilistic Graphical Models, 17-19 September 2008, Hirtshals, Denmark, 169-176, 2008.
    • (2008) 4th EuropeanWorkshop on Probabilistic Graphical Models , pp. 169-176
    • Langseth, H.1    Nielsen, T.D.2
  • 27
    • 77955229379 scopus 로고    scopus 로고
    • Parameter estimation and model selection for mixtures of truncated exponentials
    • Langseth, H., Nielsen, T. D., Rumí, R., and Salmerón, A.: Parameter estimation and model selection for mixtures of truncated exponentials, Int. J. Approx. Reason., 51, 485-498, 2010.
    • (2010) Int. J. Approx. Reason. , vol.51 , pp. 485-498
    • Langseth, H.1    Nielsen, T.D.2    Rumí, R.3    Salmerón, A.4
  • 31
    • 77955916229 scopus 로고    scopus 로고
    • Review article Assessment of economic flood damage
    • Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Review article "Assessment of economic flood damage", Nat. Hazards Earth Syst. Sci., 10, 1697-1724, doi:10.5194/nhess-10-1697-2010, 2010.
    • (2010) Nat. Hazards Earth Syst. Sci. , vol.10 , pp. 1697-1724
    • Merz, B.1    Kreibich, H.2    Schwarze, R.3    Thieken, A.4
  • 32
    • 84872230847 scopus 로고    scopus 로고
    • Multi-variate flood damage assessment: A tree-based data-mining approach
    • Merz, B., Kreibich, H., and Lall, U.: Multi-variate flood damage assessment: a tree-based data-mining approach, Nat. Hazards Earth Syst. Sci., 13, 53-64, doi:10.5194/nhess-13-53-2013, 2013.
    • (2013) Nat. Hazards Earth Syst. Sci. , vol.13 , pp. 53-64
    • Merz, B.1    Kreibich, H.2    Lall, U.3
  • 33
    • 33646771449 scopus 로고    scopus 로고
    • A multivariate discretization method for learning Bayesian networks from mixed data
    • 24-26 July 1998 Madison, WI
    • Monti, S. and Cooper, G. F.: A multivariate discretization method for learning Bayesian networks from mixed data, Fourteenth conference on Uncertainty in artificial intelligence, 24-26 July 1998, Madison, WI, 404-413, 1998.
    • (1998) Fourteenth Conference on Uncertainty in Artificial Intelligence , pp. 404-413
    • Monti, S.1    Cooper, G.F.2
  • 34
    • 84937428461 scopus 로고    scopus 로고
    • Mixtures of truncated exponentials in hybrid Bayesian networks
    • edited by: Benferhat, S. and Besnard, P Springer, Berlin, Heidelberg
    • Moral, S., Rumí, R., and Salmerón, A.: Mixtures of truncated exponentials in hybrid Bayesian networks, in: Symbolic and Quantitative Approaches to Reasoning with Uncertainty, edited by: Benferhat, S. and Besnard, P., Springer, Berlin, Heidelberg, 156-167, 2001.
    • (2001) Symbolic and Quantitative Approaches to Reasoning with Uncertainty , pp. 156-167
    • Moral, S.1    Rumí, R.2    Salmerón, A.3
  • 37
    • 33646385607 scopus 로고    scopus 로고
    • MCMC learning of Bayesian network models by Markov blanket decomposition
    • Springer, Berlin, Heidelberg
    • Riggelsen, C.: MCMC learning of Bayesian network models by Markov blanket decomposition, in: Machine Learning: ECML 2005, Springer, Berlin, Heidelberg, 329-340, 2005.
    • (2005) Machine Learning: ECML 2005 , pp. 329-340
    • Riggelsen, C.1
  • 38
    • 33745464487 scopus 로고    scopus 로고
    • Learning Bayesian networks from incomplete data: An efficient method for generating approximate predictive distributions
    • 20-22 April 2006, Bethesda, Maryland
    • Riggelsen, C.: Learning Bayesian networks from incomplete data: an efficient method for generating approximate predictive distributions, SIAM International conf. on data mining, 20-22 April 2006, Bethesda, Maryland, 130-140, 2006.
    • (2006) SIAM International Conf. on Data Mining , pp. 130-140
    • Riggelsen, C.1
  • 39
    • 67049114703 scopus 로고    scopus 로고
    • Learning bayesian networks: A MAP criterion for joint selection of model structure and parameter
    • 15-19 December 2008, Pisa, Italy
    • Riggelsen, C.: Learning Bayesian networks: a MAP criterion for joint selection of model structure and parameter, Eighth IEEE International Conference on Data Mining, 15-19 December 2008, Pisa, Italy, 522-529, 2008.
    • (2008) Eighth IEEE International Conference on Data Mining , pp. 522-529
    • Riggelsen, C.1
  • 42
    • 84859438995 scopus 로고    scopus 로고
    • Susceptibility assessment of earthquake-induced landslides using Bayesian network: A case study in Beichuan, China
    • Song, Y., Gong, J., Gao, S., Wang, D., Cui, T., Li, Y., and Wei, B.: Susceptibility assessment of earthquake-induced landslides using Bayesian network: a case study in Beichuan, China, Comput. Geosci., 42, 189-199, 2012.
    • (2012) Comput Geosci. , vol.42 , pp. 189-199
    • Song, Y.1    Gong, J.2    Gao, S.3    Wang, D.4    Cui, T.5    Li, Y.6    Wei, B.7
  • 44
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • Tanner, M. andWong,W.: The calculation of posterior distributions by data augmentation, J. Am. Stat. Assoc., 82, 528-540, 1987.
    • (1987) J. Am. Stat. Assoc. , vol.82 , pp. 528-540
    • Tanner, M.1    Wong, W.2
  • 45
    • 31444431842 scopus 로고    scopus 로고
    • Flood damage and influencing factors: New insights from the August 2002 flood in Germany
    • Thieken, A. H., Müller, M., Kreibich, H., and Merz, B.: Flood damage and influencing factors: new insights from the August 2002 flood in Germany, Water Resour. Res., 41, W12430, doi:10.1029/2005WR004177, 2005.
    • (2005) Water Resour. Res. , vol.41 , pp. W12430
    • Thieken, A.H.1    Müller, M.2    Kreibich, H.3    Merz, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.