메뉴 건너뛰기




Volumn , Issue , 2008, Pages 522-529

Learning Bayesian Networks: A MAP criterion for joint selection of model structure and parameter

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN; DIRICHLET; EM ALGORITHMS; FUNCTIONAL FORMS; INCOMPLETE DATA; JOINT SELECTION; LEARNING BAYESIAN NETWORKS; MAXIMUM LIKELIHOOD CRITERIA; MAXIMUM-LIKELIHOOD METRIC; SCORING CRITERIA; SCORING METRICS; TEST DATA;

EID: 67049114703     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2008.14     Document Type: Conference Paper
Times cited : (16)

References (20)
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike. A new look at the statistical model identification. IEEE Transactions on Auto Control, AC-19:716-723, 1974.
    • (1974) IEEE Transactions on Auto Control , vol.AC-19 , pp. 716-723
    • Akaike, H.1
  • 4
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive Probabilistic Networks with Hidden Variables
    • J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks with hidden variables. Machine Learning, 29:213-244, 1997. (Pubitemid 127510039)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.3    Kanazawa, K.4
  • 6
    • 2542465947 scopus 로고    scopus 로고
    • On inclusion-driven learning of Bayesian networks
    • R. Castelo and T. Kocka. On inclusion-driven learning of Bayesian networks. J. of Machine Learning Research, 4:527-574, 2003.
    • (2003) J. of Machine Learning Research , vol.4 , pp. 527-574
    • Castelo, R.1    Kocka, T.2
  • 7
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4):309-347, 1992.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 8
    • 0000582742 scopus 로고
    • Statistical theory: The prequential approach
    • A. P. Dawid. Statistical theory: The prequential approach. J. of Royal Stat. Society (Series A), pages 278-292, 1984.
    • (1984) J. of Royal Stat. Society (Series A) , pp. 278-292
    • Dawid, A.P.1
  • 10
    • 0001586968 scopus 로고    scopus 로고
    • Learning Bayesian networks in the presence of missing values and hidden variables
    • N. Friedman. Learning Bayesian networks in the presence of missing values and hidden variables. In Intl. Conf. on Machine Learning, pages 125-133, 1997.
    • (1997) Intl. Conf. on Machine Learning , pp. 125-133
    • Friedman, N.1
  • 11
    • 0000854197 scopus 로고    scopus 로고
    • The Bayesian structural EM algorithm
    • In G. F. Cooper and S. Moral, editors
    • N. Friedman. The Bayesian structural EM algorithm. In G. F. Cooper and S. Moral, editors, Proc. of the Conf. on Uncertainty in AI, pages 129-138, 1998.
    • (1998) Proc. of the Conf. on Uncertainty in AI , pp. 129-138
    • Friedman, N.1
  • 12
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov chain Monte Carlo model search for data mining
    • P. Giudici and R. Castelo. Improving Markov chain Monte Carlo model search for data mining. Machine Learning, 50(1):127-158, 2003.
    • (2003) Machine Learning , vol.50 , Issue.1 , pp. 127-158
    • Giudici, P.1    Castelo, R.2
  • 14
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20:197-243, 1995.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 15
    • 84874681190 scopus 로고
    • An expert system for control of waste water treatment - A pilot project
    • Technical Report, Univ. Aalborg, Judex Datasystemer
    • F. V. Jensen, U. Kjaerulff, K. G. Olesen, and J. Pedersen. An expert system for control of waste water treatment-a pilot project. Technical report, Univ. Aalborg, Judex Datasystemer, 1989. In Danish.
    • (1989) Danish
    • Jensen, F.V.1    Kjaerulff, U.2    Olesen, K.G.3    Pedersen, J.4
  • 16
    • 0030385047 scopus 로고    scopus 로고
    • Parallel implementations of probabilistic inference
    • A. Kozlov and J. Singh. Parallel probabilistic inference on cache-coherent multiprocessors. IEEE Computer, pages 33- 40, December 1996. (Pubitemid 126517869)
    • (1996) Computer , vol.29 , Issue.12 , pp. 33-40
    • Kozlov, A.V.1    Singh, J.P.2
  • 17
    • 33646385607 scopus 로고    scopus 로고
    • MCMC learning of Bayesian network models by Markov blanket decomposition
    • J. Gama, R. Camacho, P. Bazdil, A. Jorge, and L. Torgo, editors
    • C. Riggelsen. MCMC learning of Bayesian network models by Markov blanket decomposition. In J. Gama, R. Camacho, P. Bazdil, A. Jorge, and L. Torgo, editors, European Conf. on Machine Learning, pages 329-340, 2005.
    • (2005) European Conf. on Machine Learning , pp. 329-340
    • Riggelsen, C.1
  • 18
    • 0000120766 scopus 로고
    • Estimating dimensions of a model
    • G. Schwarz. Estimating dimensions of a model. Annals of Stats., 6(2):461-464, 1978.
    • (1978) Annals of Stats. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 20
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical structures
    • D. Spiegelhalter and S. Lauritzen. Sequential updating of conditional probabilities on directed graphical structures. Networks, 20:579-605, 1990.
    • (1990) Networks , vol.20 , pp. 579-605
    • Spiegelhalter, D.1    Lauritzen, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.