메뉴 건너뛰기




Volumn , Issue , 2013, Pages 3123-3130

Challenges for bayesian network learning in a flood damage assessment application

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORK LEARNING; BUILDING CHARACTERISTICS; CONTINUOUS VARIABLES; INCOMPLETE OBSERVATION; LEARNING BAYESIAN NETWORKS; MAXIMUM A POSTERIORI; PREDICTIVE DISTRIBUTIONS; SOCIO-ECONOMIC FACTOR;

EID: 84892406694     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (32)
  • 3
    • 0001586968 scopus 로고    scopus 로고
    • Learning belief networks in the presence of missing values and hidden variables
    • Friedman, N. 1997. Learning belief networks in the presence of missing values and hidden variables. In Fourteenth International Conference on Machine Learning, 125-133.
    • (1997) Fourteenth International Conference on Machine Learning , pp. 125-133
    • Friedman, N.1
  • 11
    • 33745464487 scopus 로고    scopus 로고
    • Learning bayesian networks from incomplete data: An efficient method for generating approximate predictive distributions
    • Riggelsen, C. 2006. Learning Bayesian Networks from Incomplete Data: An Efficient Method for Generating Approximate Predictive Distributions. In SIAM International conf. on data mining, 130-140.
    • (2006) SIAM International Conf. on Data Mining , pp. 130-140
    • Riggelsen, C.1
  • 12
    • 67049114703 scopus 로고    scopus 로고
    • Learning bayesian networks: A map criterion for joint selection of model structure and parameter
    • Riggelsen, C. 2008. Learning Bayesian Networks: A MAP Criterion for Joint Selection of Model Structure and Parameter. In ICDM, 2008 Eighth IEEE International Conference on Data Mining, 522-529.
    • (2008) ICDM, 2008 Eighth IEEE International Conference on Data Mining , pp. 522-529
    • Riggelsen, C.1
  • 13
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • Tanner, M.&Wong, W. 1987.The calculation of posterior distributions by data augmentation. Journal of the American statistical Association 82(398), 528-540.
    • (1987) Journal of the American Statistical Association , vol.82 , Issue.398 , pp. 528-540
    • Tanner, M.1    Wong, W.2
  • 14
    • 31444431842 scopus 로고    scopus 로고
    • Flood damage and influencing factors: New insights from the august 2002 flood in Germany
    • Thieken, A.H., Müller, M., Kreibich, H. & Merz, B. 2005. Flood damage and influencing factors: New insights from the August 2002 flood in Germany. Water resources research 41.
    • (2005) Water Resources Research , vol.41
    • Thieken, A.H.1    Müller, M.2    Kreibich, H.3    Merz, B.4
  • 19
    • 0001586968 scopus 로고    scopus 로고
    • Learning belief networks in the presence of missing values and hidden variables
    • Friedman, N. 1997. Learning belief networks in the presence of missing values and hidden variables. In Fourteenth International Conference on Machine Learning, 125-133.
    • (1997) Fourteenth International Conference on Machine Learning , pp. 125-133
    • Friedman, N.1
  • 27
    • 33745464487 scopus 로고    scopus 로고
    • Learning bayesian networks from incomplete data: An efficient method for generating approximate predictive distributions
    • Riggelsen, C. 2006. Learning Bayesian Networks from Incomplete Data: An Efficient Method for Generating Approximate Predictive Distributions. In SIAM International conf. on data mining, 130-140.
    • (2006) SIAM International Conf. on Data Mining , pp. 130-140
    • Riggelsen, C.1
  • 28
    • 67049114703 scopus 로고    scopus 로고
    • Learning bayesian networks: A map criterion for joint selection of model structure and parameter
    • Riggelsen, C. 2008. Learning Bayesian Networks: A MAP Criterion for Joint Selection of Model Structure and Parameter. In ICDM, 2008 Eighth IEEE International Conference on Data Mining, 522-529.
    • (2008) ICDM, 2008 Eighth IEEE International Conference on Data Mining , pp. 522-529
    • Riggelsen, C.1
  • 29
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation
    • Tanner, M.&Wong, W. 1987.The calculation of posterior distributions by data augmentation. Journal of the American statistical Association 82(398), 528-540.
    • (1987) Journal of the American Statistical Association , vol.82 , Issue.398 , pp. 528-540
    • Tanner, M.1    Wong, W.2
  • 30
    • 31444431842 scopus 로고    scopus 로고
    • Flood damage and influencing factors: New insights from the august 2002 flood in Germany
    • Thieken, A.H., Müller, M., Kreibich, H. & Merz, B. 2005. Flood damage and influencing factors: New insights from the August 2002 flood in Germany. Water resources research 41.
    • (2005) Water Resources Research , vol.41
    • Thieken, A.H.1    Müller, M.2    Kreibich, H.3    Merz, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.