-
2
-
-
77955890252
-
Influence of flood frequency on residential building losses
-
Elmer, F., Thieken, A.H., Pech, I. & Kreibich, H. 2010. Influence of flood frequency on residential building losses. Natural Hazards and Earth System Sciences 10, pp. 2145-2159.
-
(2010)
Natural Hazards and Earth System Sciences
, vol.10
, pp. 2145-2159
-
-
Elmer, F.1
Thieken, A.H.2
Pech, I.3
Kreibich, H.4
-
3
-
-
0001586968
-
Learning belief networks in the presence of missing values and hidden variables
-
Friedman, N. 1997. Learning belief networks in the presence of missing values and hidden variables. In Fourteenth International Conference on Machine Learning, 125-133.
-
(1997)
Fourteenth International Conference on Machine Learning
, pp. 125-133
-
-
Friedman, N.1
-
5
-
-
69049092113
-
Maximum likelihood learning of conditional MTE distributions
-
Langseth, H., Nielsen, T.D., Rumi, R. & Salmerón, A. 2009. Maximum Likelihood Learning of Conditional MTE Distributions. Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 240-251.
-
(2009)
Symbolic and Quantitative Approaches to Reasoning with Uncertainty
, pp. 240-251
-
-
Langseth, H.1
Nielsen, T.D.2
Rumi, R.3
Salmerón, A.4
-
6
-
-
77955229379
-
Parameter estimation and model selection for mixtures of truncated exponentials
-
Langseth, H., Nielsen, T.D., Rumi, R. & Salmerón, A. 2010. Parameter estimation and model selection for mixtures of truncated exponentials. International Journal of Approximate Reasoning 51(5), 485-498.
-
(2010)
International Journal of Approximate Reasoning
, vol.51
, Issue.5
, pp. 485-498
-
-
Langseth, H.1
Nielsen, T.D.2
Rumi, R.3
Salmerón, A.4
-
8
-
-
77955916229
-
Assessment of economic flood damage
-
Merz, B., Kreibich, H., Schwarze, R. &Thieken, A.H. 2010. Assessment of economic flood damage. Nat. Hazards and Earth Syst. Sci. 10, 1697-1724.
-
(2010)
Nat. Hazards and Earth Syst. Sci.
, vol.10
, pp. 1697-1724
-
-
Merz, B.1
Kreibich, H.2
Schwarze, R.3
Thieken, A.H.4
-
10
-
-
84937428461
-
Mixtures of truncated exponentials in hybrid bayesian networks
-
S. Benferhat and P. Besnard
-
Moral, S., Rumí, R. & Salmerón, A. 2001. Mixtures of Truncated Exponentials in Hybrid Bayesian Networks. In S. Benferhat and P. Besnard (Eds.), Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 156-167.
-
(2001)
Symbolic and Quantitative Approaches to Reasoning with Uncertainty
, pp. 156-167
-
-
Moral, S.1
Rumi, R.2
Salmerón, A.3
-
11
-
-
33745464487
-
Learning bayesian networks from incomplete data: An efficient method for generating approximate predictive distributions
-
Riggelsen, C. 2006. Learning Bayesian Networks from Incomplete Data: An Efficient Method for Generating Approximate Predictive Distributions. In SIAM International conf. on data mining, 130-140.
-
(2006)
SIAM International Conf. on Data Mining
, pp. 130-140
-
-
Riggelsen, C.1
-
12
-
-
67049114703
-
Learning bayesian networks: A map criterion for joint selection of model structure and parameter
-
Riggelsen, C. 2008. Learning Bayesian Networks: A MAP Criterion for Joint Selection of Model Structure and Parameter. In ICDM, 2008 Eighth IEEE International Conference on Data Mining, 522-529.
-
(2008)
ICDM, 2008 Eighth IEEE International Conference on Data Mining
, pp. 522-529
-
-
Riggelsen, C.1
-
13
-
-
84950758368
-
The calculation of posterior distributions by data augmentation
-
Tanner, M.&Wong, W. 1987.The calculation of posterior distributions by data augmentation. Journal of the American statistical Association 82(398), 528-540.
-
(1987)
Journal of the American Statistical Association
, vol.82
, Issue.398
, pp. 528-540
-
-
Tanner, M.1
Wong, W.2
-
14
-
-
31444431842
-
Flood damage and influencing factors: New insights from the august 2002 flood in Germany
-
Thieken, A.H., Müller, M., Kreibich, H. & Merz, B. 2005. Flood damage and influencing factors: New insights from the August 2002 flood in Germany. Water resources research 41.
-
(2005)
Water Resources Research
, vol.41
-
-
Thieken, A.H.1
Müller, M.2
Kreibich, H.3
Merz, B.4
-
15
-
-
84861037104
-
Graphical models as surrogates for complex ground motion models
-
Vogel, K., Riggelsen, C., Kuehn, N. & Scherbaum, F. 2012a. Graphical Models as Surrogates for Complex Ground Motion Models. Proceedings of the 11th International Conference on Artificial Intelligence and Soft Computing.
-
(2012)
th International Conference on Artificial Intelligence and Soft Computing
-
-
Vogel, K.1
Riggelsen, C.2
Kuehn, N.3
Scherbaum, F.4
-
16
-
-
84874680880
-
Flood damage and influencing factors: A bayesian network perspective
-
Vogel, K., Riggelsen, C., Merz, B., Kreibich, H. & Scherbaum, F. 2012b. Flood Damage and Influencing Factors: A Bayesian Network Perspective. Proceedings of the 6th European Workshop on Probabilistic Graphical Models, 347-354.
-
(2012)
th European Workshop on Probabilistic Graphical Models
, pp. 347-354
-
-
Vogel, K.1
Riggelsen, C.2
Merz, B.3
Kreibich, H.4
Scherbaum, F.5
-
18
-
-
77955890252
-
Influence of flood frequency on residential building losses
-
Elmer, F., Thieken, A.H., Pech, I. & Kreibich, H. 2010. Influence of flood frequency on residential building losses. Natural Hazards and Earth System Sciences 10, pp. 2145-2159.
-
(2010)
Natural Hazards and Earth System Sciences
, vol.10
, pp. 2145-2159
-
-
Elmer, F.1
Thieken, A.H.2
Pech, I.3
Kreibich, H.4
-
19
-
-
0001586968
-
Learning belief networks in the presence of missing values and hidden variables
-
Friedman, N. 1997. Learning belief networks in the presence of missing values and hidden variables. In Fourteenth International Conference on Machine Learning, 125-133.
-
(1997)
Fourteenth International Conference on Machine Learning
, pp. 125-133
-
-
Friedman, N.1
-
21
-
-
69049092113
-
Maximum likelihood learning of conditional MTE distributions
-
Langseth, H., Nielsen, T.D., Rumi, R. & Salmerón, A. 2009. Maximum Likelihood Learning of Conditional MTE Distributions. Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 240-251.
-
(2009)
Symbolic and Quantitative Approaches to Reasoning with Uncertainty
, pp. 240-251
-
-
Langseth, H.1
Nielsen, T.D.2
Rumi, R.3
Salmerón, A.4
-
22
-
-
77955229379
-
Parameter estimation and model selection for mixtures of truncated exponentials
-
Langseth, H., Nielsen, T.D., Rumi, R. & Salmerón, A. 2010. Parameter estimation and model selection for mixtures of truncated exponentials. International Journal of Approximate Reasoning 51(5), 485-498.
-
(2010)
International Journal of Approximate Reasoning
, vol.51
, Issue.5
, pp. 485-498
-
-
Langseth, H.1
Nielsen, T.D.2
Rumi, R.3
Salmerón, A.4
-
24
-
-
77955916229
-
Assessment of economic flood damage
-
Merz, B., Kreibich, H., Schwarze, R. &Thieken, A.H. 2010. Assessment of economic flood damage. Nat. Hazards and Earth Syst. Sci. 10, 1697-1724.
-
(2010)
Nat. Hazards and Earth Syst. Sci.
, vol.10
, pp. 1697-1724
-
-
Merz, B.1
Kreibich, H.2
Schwarze, R.3
Thieken, A.H.4
-
26
-
-
84937428461
-
Mixtures of truncated exponentials in hybrid bayesian networks
-
S. Benferhat and P. Besnard
-
Moral, S., Rumí, R. & Salmerón, A. 2001. Mixtures of Truncated Exponentials in Hybrid Bayesian Networks. In S. Benferhat and P. Besnard (Eds.), Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 156-167.
-
(2001)
Symbolic and Quantitative Approaches to Reasoning with Uncertainty
, pp. 156-167
-
-
Moral, S.1
Rumi, R.2
Salmerón, A.3
-
27
-
-
33745464487
-
Learning bayesian networks from incomplete data: An efficient method for generating approximate predictive distributions
-
Riggelsen, C. 2006. Learning Bayesian Networks from Incomplete Data: An Efficient Method for Generating Approximate Predictive Distributions. In SIAM International conf. on data mining, 130-140.
-
(2006)
SIAM International Conf. on Data Mining
, pp. 130-140
-
-
Riggelsen, C.1
-
28
-
-
67049114703
-
Learning bayesian networks: A map criterion for joint selection of model structure and parameter
-
Riggelsen, C. 2008. Learning Bayesian Networks: A MAP Criterion for Joint Selection of Model Structure and Parameter. In ICDM, 2008 Eighth IEEE International Conference on Data Mining, 522-529.
-
(2008)
ICDM, 2008 Eighth IEEE International Conference on Data Mining
, pp. 522-529
-
-
Riggelsen, C.1
-
29
-
-
84950758368
-
The calculation of posterior distributions by data augmentation
-
Tanner, M.&Wong, W. 1987.The calculation of posterior distributions by data augmentation. Journal of the American statistical Association 82(398), 528-540.
-
(1987)
Journal of the American Statistical Association
, vol.82
, Issue.398
, pp. 528-540
-
-
Tanner, M.1
Wong, W.2
-
30
-
-
31444431842
-
Flood damage and influencing factors: New insights from the august 2002 flood in Germany
-
Thieken, A.H., Müller, M., Kreibich, H. & Merz, B. 2005. Flood damage and influencing factors: New insights from the August 2002 flood in Germany. Water resources research 41.
-
(2005)
Water Resources Research
, vol.41
-
-
Thieken, A.H.1
Müller, M.2
Kreibich, H.3
Merz, B.4
-
31
-
-
84861037104
-
Graphical models as surrogates for complex ground motion models
-
Vogel, K., Riggelsen, C., Kuehn, N. & Scherbaum, F. 2012a. Graphical Models as Surrogates for Complex Ground Motion Models. Proceedings of the 11th International Conference on Artificial Intelligence and Soft Computing.
-
(2012)
th International Conference on Artificial Intelligence and Soft Computing
-
-
Vogel, K.1
Riggelsen, C.2
Kuehn, N.3
Scherbaum, F.4
-
32
-
-
84874680880
-
Flood damage and influencing factors: A bayesian network perspective
-
Vogel, K., Riggelsen, C., Merz, B., Kreibich, H. & Scherbaum, F. 2012b. Flood Damage and Influencing Factors: A Bayesian Network Perspective. Proceedings of the 6th European Workshop on Probabilistic Graphical Models, 347-354.
-
(2012)
th European Workshop on Probabilistic Graphical Models
, pp. 347-354
-
-
Vogel, K.1
Riggelsen, C.2
Merz, B.3
Kreibich, H.4
Scherbaum, F.5
|