메뉴 건너뛰기




Volumn 47, Issue 12, 2014, Pages 3890-3906

Incremental feature selection based on rough set in dynamic incomplete data

Author keywords

Dynamic incomplete data; Feature selection; Positive region; Rough set theory

Indexed keywords

COMPUTATION THEORY; DATA MINING; FEATURE EXTRACTION; PATTERN RECOGNITION; SET THEORY;

EID: 84907883476     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.06.002     Document Type: Article
Times cited : (111)

References (61)
  • 1
    • 0032294902 scopus 로고    scopus 로고
    • Rough set approach to incomplete information system
    • M. Kryszkiewicz Rough set approach to incomplete information system Inf. Sci. 112 1-4 1998 39 49
    • (1998) Inf. Sci. , vol.112 , Issue.14 , pp. 39-49
    • Kryszkiewicz, M.1
  • 4
    • 0036532821 scopus 로고    scopus 로고
    • A hybrid filter/wrapper approach of feature selection using information theory
    • M. Sebban, and R. Nock A hybrid filter/wrapper approach of feature selection using information theory Pattern Recognit. 35 4 2002 825 834
    • (2002) Pattern Recognit. , vol.35 , Issue.4 , pp. 825-834
    • Sebban, M.1    Nock, R.2
  • 5
    • 84891792205 scopus 로고    scopus 로고
    • A group incremental approach to feature selection applying rough set technique
    • J.Y. Liang, F. Wang, C.Y. Dang, and Y.H. Qian A group incremental approach to feature selection applying rough set technique IEEE Trans. Knowl. Data Eng. 26 2 2014 294 308
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.2 , pp. 294-308
    • Liang, J.Y.1    Wang, F.2    Dang, C.Y.3    Qian, Y.H.4
  • 7
    • 0032180332 scopus 로고    scopus 로고
    • Rough computational methods for information systems
    • J.W. Guan, and D.A. Bell Rough computational methods for information systems Artif. Intell. 105 1-2 1998 77 103
    • (1998) Artif. Intell. , vol.105 , Issue.12 , pp. 77-103
    • Guan, J.W.1    Bell, D.A.2
  • 8
    • 65849531452 scopus 로고    scopus 로고
    • A fast approach to attribute reduction in incomplete decision systems with tolerance relation-based rough sets
    • Z.Q. Meng, and Z.Z. Shi A fast approach to attribute reduction in incomplete decision systems with tolerance relation-based rough sets Inf. Sci. 179 2009 2774 2793
    • (2009) Inf. Sci. , vol.179 , pp. 2774-2793
    • Meng, Z.Q.1    Shi, Z.Z.2
  • 9
    • 0037809690 scopus 로고    scopus 로고
    • Maximal consistent block technique for rule acquisition in incomplete information systems
    • Y. Leung, and D.Y. Li Maximal consistent block technique for rule acquisition in incomplete information systems Inf. Sci. 153 2003 85 106
    • (2003) Inf. Sci. , vol.153 , pp. 85-106
    • Leung, Y.1    Li, D.Y.2
  • 10
    • 77955227234 scopus 로고    scopus 로고
    • Approximation reduction in inconsistent incomplete decision tables
    • Y.H. Qian, J.Y. Liang, D.Y. Li, F. Wang, and N.N. Ma Approximation reduction in inconsistent incomplete decision tables Knowl.-Based Syst. 23 2010 427 433
    • (2010) Knowl.-Based Syst. , vol.23 , pp. 427-433
    • Qian, Y.H.1    Liang, J.Y.2    Li, D.Y.3    Wang, F.4    Ma, N.N.5
  • 11
    • 35048890498 scopus 로고    scopus 로고
    • Data with missing attribute values: Generalization of indiscernibility relation and rule induction
    • Springer-Verlag, Berlin
    • J.W. Grzymala-Busse, Data with missing attribute values: generalization of indiscernibility relation and rule induction, Transactions on Rough Sets I, Lecture Notes in Computer Sciences, vol. 3100, Springer-Verlag, Berlin, 2004, pp. 78-95.
    • (2004) Transactions on Rough Sets I, Lecture Notes in Computer Sciences , vol.3100 , pp. 78-95
    • Grzymala-Busse, J.W.1
  • 12
    • 30344485118 scopus 로고    scopus 로고
    • Missing is useful missing values in cost-sensitive decision trees
    • S.C. Zhang, Z.X. Qin, and C.X. Ling Missing is useful missing values in cost-sensitive decision trees IEEE Trans. Knowl. Data Eng. 17 2005 1689 1693
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , pp. 1689-1693
    • Zhang, S.C.1    Qin, Z.X.2    Ling, C.X.3
  • 13
    • 78649779129 scopus 로고    scopus 로고
    • The incremental method for fast computing the rough fuzzy approximations
    • Y. Cheng The incremental method for fast computing the rough fuzzy approximations Data Knowl. Eng. 70 1 2011 84 100
    • (2011) Data Knowl. Eng. , vol.70 , Issue.1 , pp. 84-100
    • Cheng, Y.1
  • 14
    • 0346545485 scopus 로고    scopus 로고
    • Instance-based filter for feature selection
    • B. Reman, and T.R. Loerger Instance-based filter for feature selection J. Mach. Learn. Res. 1 2002 1 23
    • (2002) J. Mach. Learn. Res. , vol.1 , pp. 1-23
    • Reman, B.1    Loerger, T.R.2
  • 15
    • 34248165925 scopus 로고    scopus 로고
    • A rough sets based characteristic relation approach for dynamic attribute generalization in data mining
    • T. Li, D. Ruan, and W. Geert A rough sets based characteristic relation approach for dynamic attribute generalization in data mining Knowl.-Based Syst. 20 5 2007 485 494
    • (2007) Knowl.-Based Syst. , vol.20 , Issue.5 , pp. 485-494
    • Li, T.1    Ruan, D.2    Geert, W.3
  • 16
    • 84871922408 scopus 로고    scopus 로고
    • Attribute reduction a dimension incremental strategy
    • F. Wang, J.Y. Liang, and Y.H. Qian Attribute reduction a dimension incremental strategy Knowl.-Based Syst. 39 2013 95 108
    • (2013) Knowl.-Based Syst. , vol.39 , pp. 95-108
    • Wang, F.1    Liang, J.Y.2    Qian, Y.H.3
  • 18
    • 84862809634 scopus 로고    scopus 로고
    • Rough sets based matrix approaches with dynamic attribute variation in set-valued information systems
    • J.B. Zhang, T.R. Li, D. Ruan, and D. Liu Rough sets based matrix approaches with dynamic attribute variation in set-valued information systems Int. J. Approx. Reason. 53 2012 620 635
    • (2012) Int. J. Approx. Reason. , vol.53 , pp. 620-635
    • Zhang, J.B.1    Li, T.R.2    Ruan, D.3    Liu, D.4
  • 19
    • 77956936931 scopus 로고    scopus 로고
    • A rough set based dynamic maintenance approach for approximation in coarsening and refining attribute values
    • H. Chen, T. Li, S. Qiao, and D. Ruan A rough set based dynamic maintenance approach for approximation in coarsening and refining attribute values Int. J. Intell. Syst. 25 2010 1005 1026
    • (2010) Int. J. Intell. Syst. , vol.25 , pp. 1005-1026
    • Chen, H.1    Li, T.2    Qiao, S.3    Ruan, D.4
  • 20
    • 2442528339 scopus 로고    scopus 로고
    • Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring
    • Q. Shen, and R. Jensen Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring Pattern Recognit. 37 2004 1351 1363
    • (2004) Pattern Recognit. , vol.37 , pp. 1351-1363
    • Shen, Q.1    Jensen, R.2
  • 21
    • 21244455292 scopus 로고    scopus 로고
    • Knowledge reduction in random information systems via Dempster-Shafer theory of evidence
    • W.Z. Wu, M. Zhang, H.Z. Li, and J.S. Mi Knowledge reduction in random information systems via Dempster-Shafer theory of evidence Inf. Sci. 174 34 2005 143 164
    • (2005) Inf. Sci. , vol.174 , Issue.34 , pp. 143-164
    • Wu, W.Z.1    Zhang, M.2    Li, H.Z.3    Mi, J.S.4
  • 22
    • 84869500193 scopus 로고    scopus 로고
    • Feature selection with harmony search
    • R. Diao, and Q. Shen Feature selection with harmony search IEEE Trans. Syst., Man, Cybern. B 42 6 2012 1509 1523
    • (2012) IEEE Trans. Syst., Man, Cybern. B , vol.42 , Issue.6 , pp. 1509-1523
    • Diao, R.1    Shen, Q.2
  • 24
    • 71849095326 scopus 로고    scopus 로고
    • Topological solution of missing attribute values problem in incomplete information tables
    • A.S. Salama Topological solution of missing attribute values problem in incomplete information tables Inf. Sci. 180 2010 631 639
    • (2010) Inf. Sci. , vol.180 , pp. 631-639
    • Salama, A.S.1
  • 25
    • 0003106181 scopus 로고    scopus 로고
    • Dealing with missing data in rough set analysis of multi-attribute and multi-criteria decision problems
    • S. Zanakis, G. Doukidis, C. Zopounidis, Kluwer Academic Publishers Boston, MA
    • S. Greco, B. Matarazzo, and R. Slowinski Dealing with missing data in rough set analysis of multi-attribute and multi-criteria decision problems S. Zanakis, G. Doukidis, C. Zopounidis, Decision Making Recent developments and WorldWide Applications 2000 Kluwer Academic Publishers Boston, MA 295 316
    • (2000) Decision Making Recent Developments and WorldWide Applications , pp. 295-316
    • Greco, S.1    Matarazzo, B.2    Slowinski, R.3
  • 26
    • 84866886470 scopus 로고    scopus 로고
    • Sample pair selection for attribute reduction with rough set
    • D.G. Chen, S.Y. Zhao, and L. Zhang Sample pair selection for attribute reduction with rough set IEEE Trans. Knowl. Data Eng. 24 11 2012 2080 2093
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.11 , pp. 2080-2093
    • Chen, D.G.1    Zhao, S.Y.2    Zhang, L.3
  • 27
    • 77955276320 scopus 로고    scopus 로고
    • An efficient algorithm for incremental mining of temporal association rules
    • T.F. Gharib, H. Nassar, M. Taha, and A. Abraham An efficient algorithm for incremental mining of temporal association rules Data Knowl. Eng. 69 8 2010 800 815
    • (2010) Data Knowl. Eng. , vol.69 , Issue.8 , pp. 800-815
    • Gharib, T.F.1    Nassar, H.2    Taha, M.3    Abraham, A.4
  • 28
    • 84869426408 scopus 로고    scopus 로고
    • Attribute reduction for dynamic data sets
    • F. Wang, J.Y. Liang, and C.Y. Dang Attribute reduction for dynamic data sets Appl. Soft Comput. 13 2013 676 689
    • (2013) Appl. Soft Comput. , vol.13 , pp. 676-689
    • Wang, F.1    Liang, J.Y.2    Dang, C.Y.3
  • 31
    • 62349118015 scopus 로고    scopus 로고
    • Feature selection with dynamic mutual information
    • H.W. Liu, J.G. Sun, L. Liu, and H.J. Zhang Feature selection with dynamic mutual information Pattern Recognit. 42 2009 1330 1339
    • (2009) Pattern Recognit. , vol.42 , pp. 1330-1339
    • Liu, H.W.1    Sun, J.G.2    Liu, L.3    Zhang, H.J.4
  • 32
    • 0002865353 scopus 로고    scopus 로고
    • On rough set based approaches to induction of decision rules
    • A. Skowron, L. Polkowski (Eds.)
    • J. Stefanowski, On rough set based approaches to induction of decision rules, in: A. Skowron, L. Polkowski (Eds.), Rough Sets in Knowledge Discovery, 1998, pp. 500-529.
    • (1998) Rough Sets in Knowledge Discovery , pp. 500-529
    • Stefanowski, J.1
  • 33
    • 77951118185 scopus 로고    scopus 로고
    • Positive approximation an accelerator for attribute reduction in rough set theory
    • Y.H. Qian, J.Y. Liang, W. Pedrycz, and C.Y. Dang Positive approximation an accelerator for attribute reduction in rough set theory Artif. Intell. 174 2010 597 618
    • (2010) Artif. Intell. , vol.174 , pp. 597-618
    • Qian, Y.H.1    Liang, J.Y.2    Pedrycz, W.3    Dang, C.Y.4
  • 34
    • 34547699509 scopus 로고    scopus 로고
    • Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation
    • Q.H. Hu, Z.X. Xie, and D.R. Yu Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation Pattern Recognit. 40 2007 3509 3521
    • (2007) Pattern Recognit. , vol.40 , pp. 3509-3521
    • Hu, Q.H.1    Xie, Z.X.2    Yu, D.R.3
  • 35
    • 79953066019 scopus 로고    scopus 로고
    • An efficient accelerator for attribute reduction from incomplete data in rough set framework
    • Y.H. Qian, J.Y. Liang, W. Pedrycz, and C.Y. Dang An efficient accelerator for attribute reduction from incomplete data in rough set framework Pattern Recognit. 44 8 2011 1658 1670
    • (2011) Pattern Recognit. , vol.44 , Issue.8 , pp. 1658-1670
    • Qian, Y.H.1    Liang, J.Y.2    Pedrycz, W.3    Dang, C.Y.4
  • 36
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • M. Dash, and H. Liu Consistency-based search in feature selection Artif. Intell. 151 1-2 2003 155 176
    • (2003) Artif. Intell. , vol.151 , Issue.12 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 37
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, and C. Ding Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy IEEE Trans. Pattern Anal. Mach. Intell. 27 8 2005 1226 1238
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 38
    • 58249084603 scopus 로고    scopus 로고
    • Exploring the boundary region of tolerance rough sets for feature selection
    • N.M. Parthalain, and Q. Shen Exploring the boundary region of tolerance rough sets for feature selection Pattern Recognit. 42 5 2009 655 667
    • (2009) Pattern Recognit. , vol.42 , Issue.5 , pp. 655-667
    • Parthalain, N.M.1    Shen, Q.2
  • 39
    • 78651367557 scopus 로고    scopus 로고
    • Hybrid approaches to attribute reduction based on indiscernibility and discernibility relation
    • J. Qian, D. Miao, Z. Zhang, and W. Li Hybrid approaches to attribute reduction based on indiscernibility and discernibility relation Int. J. Approx. Reason. 52 2 2011 212 230
    • (2011) Int. J. Approx. Reason. , vol.52 , Issue.2 , pp. 212-230
    • Qian, J.1    Miao, D.2    Zhang, Z.3    Li, W.4
  • 40
    • 33749680310 scopus 로고    scopus 로고
    • Rudiments of rough sets
    • Z. Pawlak, and A. Skowron Rudiments of rough sets Inf. Sci. 177 1 2007 3 27
    • (2007) Inf. Sci. , vol.177 , Issue.1 , pp. 3-27
    • Pawlak, Z.1    Skowron, A.2
  • 41
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • R.W. Swiniarski, and A. Skowron Rough set methods in feature selection and recognition Pattern Recognit. Lett. 24 2003 833 849
    • (2003) Pattern Recognit. Lett. , vol.24 , pp. 833-849
    • Swiniarski, R.W.1    Skowron, A.2
  • 42
    • 68849126540 scopus 로고    scopus 로고
    • New approaches to fuzzy-rough feature selection
    • R. Jensen, and Q. Shen New approaches to fuzzy-rough feature selection IEEE Trans. Fuzzy Syst. 17 4 2009 824 838
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , Issue.4 , pp. 824-838
    • Jensen, R.1    Shen, Q.2
  • 43
    • 84862789151 scopus 로고    scopus 로고
    • Feature evaluation and selection with cooperative game theory
    • X. Sun, Y.H. Liu, J. Li, J.Q. Zhu, H.L. Chen, and X.J. Liu Feature evaluation and selection with cooperative game theory Pattern Recognit. 45 2012 2992 3002
    • (2012) Pattern Recognit. , vol.45 , pp. 2992-3002
    • Sun, X.1    Liu, Y.H.2    Li, J.3    Zhu, J.Q.4    Chen, H.L.5    Liu, X.J.6
  • 44
    • 84907883402 scopus 로고    scopus 로고
    • ROSETTA: a rough set toolkit for analysis of data
    • ROSETTA: a rough set toolkit for analysis of data, 〈 http://www.lcb.uu.se/tools/rosetta/index.php 〉.
  • 46
    • 84907883401 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • UCI Machine Learning Repository, 〈 http://archive.ics.uci.edu/ml/datasets.html 〉.
  • 47
    • 84867880445 scopus 로고    scopus 로고
    • Feature selection using rough entropy-based uncertainty measures in incomplete decision systems
    • L. Sun, J.C. Xu, and Y. Tian Feature selection using rough entropy-based uncertainty measures in incomplete decision systems Knowl.-Based Syst. 36 2012 206 216
    • (2012) Knowl.-Based Syst. , vol.36 , pp. 206-216
    • Sun, L.1    Xu, J.C.2    Tian, Y.3
  • 48
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m ranking
    • M. Friedman A comparison of alternative tests of significance for the problem of m ranking Ann. Math. Stat. 11 1940 86 92
    • (1940) Ann. Math. Stat. , vol.11 , pp. 86-92
    • Friedman, M.1
  • 51
    • 37549018049 scopus 로고    scopus 로고
    • Top 10 algorithms in data mining
    • X. Wu, V. Kumar, and J.R. Quinlan Top 10 algorithms in data mining Knowl. Inf. Syst. 14 1 2008 1 37
    • (2008) Knowl. Inf. Syst. , vol.14 , Issue.1 , pp. 1-37
    • Wu, X.1    Kumar, V.2    Quinlan, J.R.3
  • 52
    • 23744432473 scopus 로고    scopus 로고
    • Information gain and divergence based feature selection for machine learning based text categorization
    • C. Lee, and G.G. Lee Information gain and divergence based feature selection for machine learning based text categorization Inf. Process. Manag. 42 1 2006 155 165
    • (2006) Inf. Process. Manag. , vol.42 , Issue.1 , pp. 155-165
    • Lee, C.1    Lee, G.G.2
  • 53
    • 13844298045 scopus 로고    scopus 로고
    • Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information
    • N. Kawk, and C.H. Choi Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information IEEE Trans. Neural Netw. 16 1 2005 213 224
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.1 , pp. 213-224
    • Kawk, N.1    Choi, C.H.2
  • 54
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparison of classiers over multiple datasets
    • J. Demsar Statistical comparison of classiers over multiple datasets J. Mach. Learn. Res. 7 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 56
    • 0037734023 scopus 로고    scopus 로고
    • A new method for fast computing positive region
    • (in Chinese)
    • S.H. Liu, Q.J. Sheng, and Z.Z. Shi A new method for fast computing positive region J. Comput. Res. Dev. 40 2003 637 642 (in Chinese)
    • (2003) J. Comput. Res. Dev. , vol.40 , pp. 637-642
    • Liu, S.H.1    Sheng, Q.J.2    Shi, Z.Z.3
  • 59
    • 33745561205 scopus 로고    scopus 로고
    • An introduce to variable and feature selection
    • I. Guyon, and A. Elisseeff An introduce to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 60
    • 33244489131 scopus 로고    scopus 로고
    • The Bhattacharyya space for feature selection and its application to texture segmentation
    • C.C. Reyes-Aldasoro, and A. Bhalerao The Bhattacharyya space for feature selection and its application to texture segmentation Pattern Recognit. 39 2006 812 826
    • (2006) Pattern Recognit. , vol.39 , pp. 812-826
    • Reyes-Aldasoro, C.C.1    Bhalerao, A.2
  • 61
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi, and G.H. John Wrappers for feature subset selection Artif. Intell. 97 1-2 1997 273 324
    • (1997) Artif. Intell. , vol.97 , Issue.12 , pp. 273-324
    • Kohavi, R.1    John, G.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.