메뉴 건너뛰기




Volumn 52, Issue 2, 2011, Pages 212-230

Hybrid approaches to attribute reduction based on indiscernibility and discernibility relation

Author keywords

Attribute reduction; Boundary region; Discernibility matrix; Hybrid attribute measure; Information entropy; Positive region

Indexed keywords

ATTRIBUTE REDUCTION; BOUNDARY REGIONS; DISCERNIBILITY MATRIX; HYBRID ATTRIBUTES; INFORMATION ENTROPY; POSITIVE REGION;

EID: 78651367557     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2010.07.011     Document Type: Article
Times cited : (117)

References (36)
  • 1
    • 36948999941 scopus 로고    scopus 로고
    • University of California, Department of Information and Computer Science Irvine, CA
    • A. Asuncion, and D.J. Newman UCI Machine Learning Repository 2007 University of California, Department of Information and Computer Science Irvine, CA http://www.ics.uci.edu/∼mlearn/MLRepository.html
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 3
    • 0032137218 scopus 로고    scopus 로고
    • Information-theoretic measures of uncertainty for rough sets and rough relational databases
    • T. Beaubouef, F.E. Petry, and G. Arora Information-theoretic measures of uncertainty for rough sets and rough relational databases Information Sciences 109 1998 185 195
    • (1998) Information Sciences , vol.109 , pp. 185-195
    • Beaubouef, T.1    Petry, F.E.2    Arora, G.3
  • 4
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • M. Dash, and H. Liu Consistency-based search in feature selection Artificial Intelligence 151 2003 155 176
    • (2003) Artificial Intelligence , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 5
    • 0032205549 scopus 로고    scopus 로고
    • Uncertainty measures of rough set prediction
    • I. Düntsch, and G. Gediga Uncertainty measures of rough set prediction Artificial Intelligence 106 1998 77 107
    • (1998) Artificial Intelligence , vol.106 , pp. 77-107
    • Düntsch, I.1    Gediga, G.2
  • 6
    • 0029310113 scopus 로고
    • Learning in relational databases: A rough set approach
    • X.H. Hu, and N. Cercone Learning in relational databases: a rough set approach Computational Intelligence 11 1995 323 338
    • (1995) Computational Intelligence , vol.11 , pp. 323-338
    • Hu, X.H.1    Cercone, N.2
  • 7
    • 34547699509 scopus 로고    scopus 로고
    • Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation
    • Q.H. Hu, Z.X. Xie, and D.R. Yu Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation Pattern Recognition Letters 40 2007 3509 3521
    • (2007) Pattern Recognition Letters , vol.40 , pp. 3509-3521
    • Hu, Q.H.1    Xie, Z.X.2    Yu, D.R.3
  • 9
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approaches
    • R. Jensen, and Q. Shen Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches IEEE Transactions on Knowledge and Data Engineering 16 2004 1457 1471
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.16 , pp. 1457-1471
    • Jensen, R.1    Shen, Q.2
  • 11
    • 24744445851 scopus 로고    scopus 로고
    • An efficient knowledge reduction algorithm based on new conditional information entropy
    • Q.H. Liu, F. Li, F. Min, and M. Ye An efficient knowledge reduction algorithm based on new conditional information entropy Control and Decision 20 2005 878 882 (in Chinese)
    • (2005) Control and Decision , vol.20 , pp. 878-882
    • Liu, Q.H.1    Li, F.2    Min, F.3    Ye, M.4
  • 12
    • 2342547783 scopus 로고    scopus 로고
    • A comparison of rough set methods and representative inductive learning algorithms
    • D.Q. Miao, and L. Hou A comparison of rough set methods and representative inductive learning algorithms Fundamenta Informaticae 59 2004 203 219
    • (2004) Fundamenta Informaticae , vol.59 , pp. 203-219
    • Miao, D.Q.1    Hou, L.2
  • 14
    • 70349757166 scopus 로고    scopus 로고
    • Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model
    • D.Q. Miao, Y. Zhao, and Y.Y. Yao Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model Information Sciences 179 2009 4140 4150
    • (2009) Information Sciences , vol.179 , pp. 4140-4150
    • Miao, D.Q.1    Zhao, Y.2    Yao, Y.Y.3
  • 16
    • 58249084603 scopus 로고    scopus 로고
    • Exploring the boundary region of tolerance rough sets for feature selection
    • N.M. Partháln, and Q. Shen Exploring the boundary region of tolerance rough sets for feature selection Pattern Recognition 42 2009 55 667
    • (2009) Pattern Recognition , vol.42 , pp. 55-667
    • Partháln, N.M.1    Shen, Q.2
  • 19
    • 58849144238 scopus 로고    scopus 로고
    • Knowledge structure, knowledge granulation and knowledge distance in a knowledge base
    • Y.H. Qian, J.Y. Liang, and C.Y. Dang Knowledge structure, knowledge granulation and knowledge distance in a knowledge base International Journal of Approximate Reasoning. 50 2009 174 188
    • (2009) International Journal of Approximate Reasoning. , vol.50 , pp. 174-188
    • Qian, Y.H.1    Liang, J.Y.2    Dang, C.Y.3
  • 21
    • 0012569466 scopus 로고    scopus 로고
    • Normalized decision functions and measures for inconsistent decision tables analysis
    • D. Slezak Normalized decision functions and measures for inconsistent decision tables analysis Fundamenta Informaticae 44 2000 291 319
    • (2000) Fundamenta Informaticae , vol.44 , pp. 291-319
    • Slezak, D.1
  • 22
    • 0038368682 scopus 로고    scopus 로고
    • Various approaches to reasoning with frequency based decision reducts: A survey
    • Physica-Verlag Heidelberg
    • D. Slezak Various approaches to reasoning with frequency based decision reducts: a survey Rough Set Methods and Applications 2000 Physica-Verlag Heidelberg 235 285
    • (2000) Rough Set Methods and Applications , pp. 235-285
    • Slezak, D.1
  • 23
    • 3142719118 scopus 로고    scopus 로고
    • Reducts and constructs in attribute reduction
    • R. Susmaga Reducts and constructs in attribute reduction Fundamenta Informaticae 61 2 2004 159 181
    • (2004) Fundamenta Informaticae , vol.61 , Issue.2 , pp. 159-181
    • Susmaga, R.1
  • 25
    • 0035505464 scopus 로고    scopus 로고
    • Reduction algorithms based on discernibility matrix; The ordered attributes method
    • J. Wang, and J. Wang Reduction algorithms based on discernibility matrix; the ordered attributes method Journal of Computer Science and Technology 16 2001 489 504
    • (2001) Journal of Computer Science and Technology , vol.16 , pp. 489-504
    • Wang, J.1    Wang, J.2
  • 26
    • 0036662454 scopus 로고    scopus 로고
    • Decision table reduction based on conditional information entropy
    • G.Y. Wang, H. Yu, and D.C. Yang Decision table reduction based on conditional information entropy Chinese Journal of Computers 25 2002 760 766 (in Chinese)
    • (2002) Chinese Journal of Computers , vol.25 , pp. 760-766
    • Wang, G.Y.1    Yu, H.2    Yang, D.C.3
  • 30
    • 33646357766 scopus 로고    scopus 로고
    • An incremental updating algorithm of the computation of a core based on the improved discernibility matrix
    • M. Yang An incremental updating algorithm of the computation of a core based on the improved discernibility matrix Chinese Journal of Computers 29 3 2006 407 413 (in Chinese)
    • (2006) Chinese Journal of Computers , vol.29 , Issue.3 , pp. 407-413
    • Yang, M.1
  • 32
    • 58249098798 scopus 로고    scopus 로고
    • Discernibility matrix simplification for constructing attribute reducts
    • Y.Y. Yao, and Y. Zhao Discernibility matrix simplification for constructing attribute reducts Information Sciences 179 7 2009 867 882
    • (2009) Information Sciences , vol.179 , Issue.7 , pp. 867-882
    • Yao, Y.Y.1    Zhao, Y.2
  • 34
    • 34548258153 scopus 로고    scopus 로고
    • Data analysis based on discernibility and indiscernibility
    • Y. Zhao, Y.Y. Yao, and F. Luo Data analysis based on discernibility and indiscernibility Information Sciences 177 2007 4959 4976
    • (2007) Information Sciences , vol.177 , pp. 4959-4976
    • Zhao, Y.1    Yao, Y.Y.2    Luo, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.