메뉴 건너뛰기




Volumn 20, Issue 5, 2007, Pages 485-494

A rough sets based characteristic relation approach for dynamic attribute generalization in data mining

Author keywords

Data mining; Incomplete information systems; Knowledge discovery; Rough sets

Indexed keywords

COMPUTATION THEORY; FEATURE EXTRACTION; INFORMATION RETRIEVAL SYSTEMS; INFORMATION SYSTEMS; ROUGH SET THEORY;

EID: 34248165925     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2007.01.002     Document Type: Article
Times cited : (285)

References (31)
  • 1
    • 0032093405 scopus 로고    scopus 로고
    • A rough set approach to attribute generalization in data mining
    • Chan C.C. A rough set approach to attribute generalization in data mining. Information Sciences 107 (1998) 177-194
    • (1998) Information Sciences , vol.107 , pp. 177-194
    • Chan, C.C.1
  • 2
    • 0000549391 scopus 로고    scopus 로고
    • An approach for attribute reduction and rule generation based on rough set theory
    • Chang L., Wang G., and Wu Y. An approach for attribute reduction and rule generation based on rough set theory. Journal of Software 10 11 (1999) 1206-1211
    • (1999) Journal of Software , vol.10 , Issue.11 , pp. 1206-1211
    • Chang, L.1    Wang, G.2    Wu, Y.3
  • 3
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M., and Liu H. Feature selection for classification. Intelligence Data Analysis 1 (1997) 131-156
    • (1997) Intelligence Data Analysis , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 4
    • 25844491810 scopus 로고    scopus 로고
    • An intelligent intrusion detection system (ids) for anomaly and misuse detection in computer networks
    • Depren O., Topallar M., Anarim E., and Ciliz M.K. An intelligent intrusion detection system (ids) for anomaly and misuse detection in computer networks. Expert Systems with Applications 29 4 (2005) 713-722
    • (2005) Expert Systems with Applications , vol.29 , Issue.4 , pp. 713-722
    • Depren, O.1    Topallar, M.2    Anarim, E.3    Ciliz, M.K.4
  • 7
    • 34248198229 scopus 로고    scopus 로고
    • Characteristic relations for incomplete data: A generalization of the indiscernibility relation
    • Grzymala-Busse J.W. Characteristic relations for incomplete data: A generalization of the indiscernibility relation. Transactions on Rough Sets IV (2005) 58-68
    • (2005) Transactions on Rough Sets , vol.IV , pp. 58-68
    • Grzymala-Busse, J.W.1
  • 8
    • 34248226187 scopus 로고    scopus 로고
    • J.W. Grzymala-Busse, S. Siddhaye, Rough set approaches to rule induction from incomplete data, in: International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, 2004, pp. 923-930.
  • 9
    • 34248232859 scopus 로고    scopus 로고
    • M.A. Hall, Correlation-based feature selection for machine learning, Ph.D. thesis, Waikato University, New Zealand, 1999.
  • 10
    • 0036567302 scopus 로고    scopus 로고
    • Learning rules from incomplete training examples by rough sets
    • Hong T.P., Tseng L.H., and Wang S.L. Learning rules from incomplete training examples by rough sets. Expert System with Applications 22 4 (2002) 285-293
    • (2002) Expert System with Applications , vol.22 , Issue.4 , pp. 285-293
    • Hong, T.P.1    Tseng, L.H.2    Wang, S.L.3
  • 11
    • 0022848955 scopus 로고
    • Feature selection and extraction
    • Young T.Y., and Fu K. (Eds), Academic Press, New York
    • Kittler J. Feature selection and extraction. In: Young T.Y., and Fu K. (Eds). Handbook of Pattern Recognition and Image Processing (1986), Academic Press, New York 203-217
    • (1986) Handbook of Pattern Recognition and Image Processing , pp. 203-217
    • Kittler, J.1
  • 12
    • 0032294902 scopus 로고    scopus 로고
    • Rough set approach to incomplete information system
    • Kryszkiewicz M. Rough set approach to incomplete information system. Information Sciences 112 (1998) 39-49
    • (1998) Information Sciences , vol.112 , pp. 39-49
    • Kryszkiewicz, M.1
  • 14
    • 0034960598 scopus 로고    scopus 로고
    • Rough set theory: A data mining tool for semiconductor manufacturing
    • Kusiak A. Rough set theory: A data mining tool for semiconductor manufacturing. IEEE Transaction on Electronics Packaging Manufacturing 24 1 (2001) 44-50
    • (2001) IEEE Transaction on Electronics Packaging Manufacturing , vol.24 , Issue.1 , pp. 44-50
    • Kusiak, A.1
  • 15
    • 1542375815 scopus 로고    scopus 로고
    • T. Li, J. Ma, Y. Xu, N. Yang, An approach to attribute generalization in incomplete information system, in: International Conference on Machine Learning and Cybernetics, 2003, pp. 1678-1691.
  • 16
    • 34248218928 scopus 로고    scopus 로고
    • A generalization rough set approach to attribute generalization in data mining
    • Li T., and Xu Y. A generalization rough set approach to attribute generalization in data mining. Journal of Southwest Jiaotong University 8 1 (2000) 69-75
    • (2000) Journal of Southwest Jiaotong University , vol.8 , Issue.1 , pp. 69-75
    • Li, T.1    Xu, Y.2
  • 17
    • 4544246194 scopus 로고    scopus 로고
    • T. Li, N. Yang, Y. Xu, J. Ma, An incremental algorithm for mining classification rules in incomplete information system, in: International Conference of the North American Fuzzy Information, 2004, pp. 446-449.
  • 19
    • 0007417922 scopus 로고    scopus 로고
    • Decision rules with rough operator and soft computing of data mining
    • Liu Q., Huang Z., Liu S., and Yao L. Decision rules with rough operator and soft computing of data mining. Journal of Computer Research & Development 36 7 (1999) 800-804
    • (1999) Journal of Computer Research & Development , vol.36 , Issue.7 , pp. 800-804
    • Liu, Q.1    Huang, Z.2    Liu, S.3    Yao, L.4
  • 22
    • 34248177183 scopus 로고    scopus 로고
    • The problem of disguised missing data
    • Pearson R.K. The problem of disguised missing data. SIGKDD Explorations 8 1 (2006) 83-92
    • (2006) SIGKDD Explorations , vol.8 , Issue.1 , pp. 83-92
    • Pearson, R.K.1
  • 26
    • 33751373279 scopus 로고    scopus 로고
    • Aiding classification of gene expression data with feature selection: A comparative study
    • Shang C., and Shen Q. Aiding classification of gene expression data with feature selection: A comparative study. International Journal of Computational Intelligence Research 1 1 (2005) 68-76
    • (2005) International Journal of Computational Intelligence Research , vol.1 , Issue.1 , pp. 68-76
    • Shang, C.1    Shen, Q.2
  • 28
    • 0035414869 scopus 로고    scopus 로고
    • Incomplete information tables and rough classification
    • Stefanowski J., and Tsoukias A. Incomplete information tables and rough classification. Computational Intelligence 17 (2001) 545-566
    • (2001) Computational Intelligence , vol.17 , pp. 545-566
    • Stefanowski, J.1    Tsoukias, A.2
  • 29
    • 2342616187 scopus 로고    scopus 로고
    • Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model
    • Tsumoto S. Mining diagnostic rules from clinical databases using rough sets and medical diagnostic model. Information Sciences 162 2 (2004) 65-80
    • (2004) Information Sciences , vol.162 , Issue.2 , pp. 65-80
    • Tsumoto, S.1
  • 31
    • 2342664664 scopus 로고    scopus 로고
    • RRIA: A rough set and rule tree based incremental knowledge acquisition algorithm
    • Zheng Z., and Wang G. RRIA: A rough set and rule tree based incremental knowledge acquisition algorithm. Fundamenta Informaticae 59 2-3 (2004) 299-313
    • (2004) Fundamenta Informaticae , vol.59 , Issue.2-3 , pp. 299-313
    • Zheng, Z.1    Wang, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.