메뉴 건너뛰기




Volumn 45, Issue , 2012, Pages 478-486

Using support vector machine models for crash injury severity analysis

Author keywords

Crash severity; Freeway diverge area; Ordered probit model; Support vector machine model

Indexed keywords

CRASH DATA; CRASH INJURY SEVERITY; CRASH SEVERITY; DATA SETS; EXTERNAL FACTORS; FREEWAY DIVERGE AREA; INJURY SEVERITY; MULTICLASS CLASSIFICATION PROBLEMS; ORDERED PROBIT MODEL; PREDICTION PERFORMANCE; RESEARCH TEAMS; SEVERAL VARIABLES; SUPPORT VECTOR; SUPPORT VECTOR MACHINE MODEL; SVM MODEL;

EID: 84856080826     PISSN: 00014575     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aap.2011.08.016     Document Type: Article
Times cited : (260)

References (38)
  • 1
    • 0345867100 scopus 로고    scopus 로고
    • Analysis of driver injury severity levels at multiple locations using ordered probit models
    • M. Abdel-Aty Analysis of driver injury severity levels at multiple locations using ordered probit models Journal of Safety Research 34 5 2003 597 603
    • (2003) Journal of Safety Research , vol.34 , Issue.5 , pp. 597-603
    • Abdel-Aty, M.1
  • 3
    • 1842480288 scopus 로고    scopus 로고
    • Predicting injury severity levels in traffic crashes: A modeling comparison
    • M.A. Abdel-Aty, and H.T. Abdelwahab Predicting injury severity levels in traffic crashes: A modeling comparison Journal of Transportation Engineering-Asce 130 2 2004 204 210
    • (2004) Journal of Transportation Engineering-Asce , vol.130 , Issue.2 , pp. 204-210
    • Abdel-Aty, M.A.1    Abdelwahab, H.T.2
  • 4
    • 0036826985 scopus 로고    scopus 로고
    • Using logistic regression to estimate the influence of accident factors on accident severity
    • A.S. Al-Ghamdi Using logistic regression to estimate the influence of accident factors on accident severity Accident Analysis and Prevention 34 6 2002 729 741
    • (2002) Accident Analysis and Prevention , vol.34 , Issue.6 , pp. 729-741
    • Al-Ghamdi, A.S.1
  • 6
    • 33745753402 scopus 로고    scopus 로고
    • Analysis of traffic injury severity: An application of non-parametric classification tree techniques
    • L.Y. Chang, and H.W. Wang Analysis of traffic injury severity: an application of non-parametric classification tree techniques Accident Analysis and Prevention 38 5 2006 1019 1027
    • (2006) Accident Analysis and Prevention , vol.38 , Issue.5 , pp. 1019-1027
    • Chang, L.Y.1    Wang, H.W.2
  • 7
    • 64849107177 scopus 로고    scopus 로고
    • Evaluating the safety impacts of the number and arrangement of lanes on freeway exit ramps
    • H.Y. Chen, P. Liu, J.J. Lu, and B. Behzadi Evaluating the safety impacts of the number and arrangement of lanes on freeway exit ramps Accident Analysis and Prevention 41 3 2009 543 551
    • (2009) Accident Analysis and Prevention , vol.41 , Issue.3 , pp. 543-551
    • Chen, H.Y.1    Liu, P.2    Lu, J.J.3    Behzadi, B.4
  • 8
    • 67349260139 scopus 로고    scopus 로고
    • Construct support vector machine ensemble to detect traffic incident
    • S.Y. Chen, W. Wang, and J.Z. Henk Construct support vector machine ensemble to detect traffic incident Expert Systems with Applications 36 8 2009 10976 10986
    • (2009) Expert Systems with Applications , vol.36 , Issue.8 , pp. 10976-10986
    • Chen, S.Y.1    Wang, W.2    Henk, J.Z.3
  • 10
  • 11
    • 78650005069 scopus 로고    scopus 로고
    • Analysis of traffic accident injury severity on spanish rural highways using bayesian networks
    • J. de Ona, R.O. Mujalli, and F.J. Calvo Analysis of traffic accident injury severity on spanish rural highways using bayesian networks Accident Analysis and Prevention 43 1 2011 402 411
    • (2011) Accident Analysis and Prevention , vol.43 , Issue.1 , pp. 402-411
    • De Ona, J.1    Mujalli, R.O.2    Calvo, F.J.3
  • 12
    • 33644889643 scopus 로고    scopus 로고
    • Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks
    • D. Delen, R. Sharda, and M. Bessonov Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks Accident Analysis and Prevention 38 3 2006 434 444
    • (2006) Accident Analysis and Prevention , vol.38 , Issue.3 , pp. 434-444
    • Delen, D.1    Sharda, R.2    Bessonov, M.3
  • 14
    • 33644906732 scopus 로고    scopus 로고
    • A visual method for determining variable importance in an artificial neural network model: An empirical benchmark study
    • K.E. Fish, and J.G. Blodgett A visual method for determining variable importance in an artificial neural network model: an empirical benchmark study Journal of Targeting, Measurement and Analysis for Marketing 11 2003 244 254
    • (2003) Journal of Targeting, Measurement and Analysis for Marketing , vol.11 , pp. 244-254
    • Fish, K.E.1    Blodgett, J.G.2
  • 15
    • 0036558127 scopus 로고    scopus 로고
    • Effects of road geometry and traffic volumes on rural roadway accident rates
    • M.G. Karlaftis, and I. Golias Effects of road geometry and traffic volumes on rural roadway accident rates Accident Analysis and Prevention 34 3 2002 357 365
    • (2002) Accident Analysis and Prevention , vol.34 , Issue.3 , pp. 357-365
    • Karlaftis, M.G.1    Golias, I.2
  • 16
    • 33847059431 scopus 로고    scopus 로고
    • Support vector machines - An introduction
    • L. Wang, Springer-Verlag Berlin, Heidelberg, New York
    • V. Kecman Support vector machines - an introduction L. Wang, Support Vector Machines: Theory and Applications 2005 Springer-Verlag Berlin, Heidelberg, New York 1 48
    • (2005) Support Vector Machines: Theory and Applications , pp. 1-48
    • Kecman, V.1
  • 17
    • 23844528542 scopus 로고    scopus 로고
    • Differences in rural and urban driver-injury severities in accidents involving large-trucks: An exploratory analysis
    • A. Khorashadi, D. Niemeier, V. Shankar, and F. Mannering Differences in rural and urban driver-injury severities in accidents involving large-trucks: an exploratory analysis Accident Analysis and Prevention 37 5 2005 910 921
    • (2005) Accident Analysis and Prevention , vol.37 , Issue.5 , pp. 910-921
    • Khorashadi, A.1    Niemeier, D.2    Shankar, V.3    Mannering, F.4
  • 18
    • 0036558120 scopus 로고    scopus 로고
    • Driver injury severity: An application of ordered probit models
    • K.M. Kockelman, and Y.J. Kweon Driver injury severity: an application of ordered probit models Accident Analysis and Prevention 34 3 2002 313 321
    • (2002) Accident Analysis and Prevention , vol.34 , Issue.3 , pp. 313-321
    • Kockelman, K.M.1    Kweon, Y.J.2
  • 19
    • 19944416633 scopus 로고    scopus 로고
    • Comprehensive analysis of vehicle-pedestrian crashes at intersections in florida
    • C. Lee, and M. Abdel-Aty Comprehensive analysis of vehicle-pedestrian crashes at intersections in florida Accident Analysis and Prevention 37 4 2005 775 786
    • (2005) Accident Analysis and Prevention , vol.37 , Issue.4 , pp. 775-786
    • Lee, C.1    Abdel-Aty, M.2
  • 20
    • 46149126623 scopus 로고    scopus 로고
    • Predicting motor vehicle crashes using support vector machine models
    • X.G. Li, D. Lord, Y.L. Zhang, and Y.C. Me Predicting motor vehicle crashes using support vector machine models Accident Analysis and Prevention 40 4 2008 1611 1618
    • (2008) Accident Analysis and Prevention , vol.40 , Issue.4 , pp. 1611-1618
    • Li, X.G.1    Lord, D.2    Zhang, Y.L.3    Me, Y.C.4
  • 21
    • 34250741488 scopus 로고    scopus 로고
    • Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi-classification
    • P. Lingras, and C. Butz Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi-classification Information Sciences 177 18 2007 3782 3798
    • (2007) Information Sciences , vol.177 , Issue.18 , pp. 3782-3798
    • Lingras, P.1    Butz, C.2
  • 22
    • 0032588286 scopus 로고    scopus 로고
    • An analysis of urban collisions using an artificial intelligence model
    • L. Mussone, A. Ferrari, and M. Oneta An analysis of urban collisions using an artificial intelligence model Accident Analysis and Prevention 31 6 1999 705 718
    • (1999) Accident Analysis and Prevention , vol.31 , Issue.6 , pp. 705-718
    • Mussone, L.1    Ferrari, A.2    Oneta, M.3
  • 23
    • 0030281607 scopus 로고    scopus 로고
    • Predicting the severity of motor vehicle accident injuries using models of ordered multiple choice
    • C.J. Odonnell, and D.H. Connor Predicting the severity of motor vehicle accident injuries using models of ordered multiple choice Accident Analysis and Prevention 28 6 1996 739 753
    • (1996) Accident Analysis and Prevention , vol.28 , Issue.6 , pp. 739-753
    • Odonnell, C.J.1    Connor, D.H.2
  • 24
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • J.D. Olden, M.K. Joy, and R.G. Death An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data Ecological Modelling 178 3-4 2004 389 397
    • (2004) Ecological Modelling , vol.178 , Issue.34 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 25
    • 34548498105 scopus 로고    scopus 로고
    • Probabilistic models of motorcyclists' injury severities in single- and multi-vehicle crashes
    • P. Savolainen, and F. Mannering Probabilistic models of motorcyclists' injury severities in single- and multi-vehicle crashes Accident Analysis and Prevention 39 5 2007 955 963
    • (2007) Accident Analysis and Prevention , vol.39 , Issue.5 , pp. 955-963
    • Savolainen, P.1    Mannering, F.2
  • 26
    • 0000248293 scopus 로고    scopus 로고
    • An exploratory multinomial logit analysis of single-vehicle motorcycle accident severity
    • V. Shankar, and F. Mannering An exploratory multinomial logit analysis of single-vehicle motorcycle accident severity Journal of Safety Research 27 3 1996 183 194
    • (1996) Journal of Safety Research , vol.27 , Issue.3 , pp. 183-194
    • Shankar, V.1    Mannering, F.2
  • 28
    • 19644361849 scopus 로고    scopus 로고
    • A Bayesian network model of two-car accidents
    • M. Simoncic A Bayesian network model of two-car accidents Journal of Transportation and Statistics 7 2/3 2004 13 25
    • (2004) Journal of Transportation and Statistics , vol.7 , Issue.2-3 , pp. 13-25
    • Simoncic, M.1
  • 29
    • 0035185594 scopus 로고    scopus 로고
    • Pattern recognition for road traffic accident severity in Korea
    • S.Y. Sohn, and H. Shin Pattern recognition for road traffic accident severity in Korea Ergonomics 44 1 2001 107 117
    • (2001) Ergonomics , vol.44 , Issue.1 , pp. 107-117
    • Sohn, S.Y.1    Shin, H.2
  • 32
    • 34548502433 scopus 로고    scopus 로고
    • Predicting motor vehicle collisions using bayesian neural network models: An empirical analysis
    • Y.C. Xie, D. Lord, and Y.L. Zhang Predicting motor vehicle collisions using bayesian neural network models: an empirical analysis Accident Analysis and Prevention 39 5 2007 922 933
    • (2007) Accident Analysis and Prevention , vol.39 , Issue.5 , pp. 922-933
    • Xie, Y.C.1    Lord, D.2    Zhang, Y.L.3
  • 33
    • 57949096181 scopus 로고    scopus 로고
    • Crash injury severity analysis using bayesian ordered probit models
    • Y.C. Xie, Y.L. Zhang, and F.M. Liang Crash injury severity analysis using bayesian ordered probit models Journal of Transportation Engineering 135 1 2009 18 25
    • (2009) Journal of Transportation Engineering , vol.135 , Issue.1 , pp. 18-25
    • Xie, Y.C.1    Zhang, Y.L.2    Liang, F.M.3
  • 36
    • 0037401013 scopus 로고    scopus 로고
    • Factors influencing injury severity of motor vehicle-crossing pedestrian crashes in rural connecticut
    • S.S. Zajac, and J.N. Ivan Factors influencing injury severity of motor vehicle-crossing pedestrian crashes in rural connecticut Accident Analysis and Prevention 35 3 2003 369 379
    • (2003) Accident Analysis and Prevention , vol.35 , Issue.3 , pp. 369-379
    • Zajac, S.S.1    Ivan, J.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.