메뉴 건너뛰기




Volumn 25, Issue , 2014, Pages 1-14

Of daemons and men: A file system approach towards intrusion detection

Author keywords

Anomaly detection; Data mining; File system; Information security; Intrusion detection systems; Machine learning

Indexed keywords

LEARNING SYSTEMS; SECURITY OF DATA; ARTIFICIAL INTELLIGENCE; DATA MINING; FILE ORGANIZATION; LEARNING ALGORITHMS; NETWORK SECURITY; SOCIAL NETWORKING (ONLINE); SUPPORT VECTOR MACHINES; WEB SERVICES; WORLD WIDE WEB;

EID: 84907481520     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2014.07.026     Document Type: Article
Times cited : (6)

References (42)
  • 1
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. Burges A tutorial on support vector machines for pattern recognition Data Min. Knowl. Discov. 2 2 1998 121 167
    • (1998) Data Min. Knowl. Discov. , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.1
  • 2
    • 13544269338 scopus 로고    scopus 로고
    • Application of svm and ann for intrusion detection
    • W. Chen, S. Hsu, and H. Shen Application of svm and ann for intrusion detection Comput. Oper. Res. 32 10 2005 2617 2634
    • (2005) Comput. Oper. Res. , vol.32 , Issue.10 , pp. 2617-2634
    • Chen, W.1    Hsu, S.2    Shen, H.3
  • 3
    • 78751621903 scopus 로고    scopus 로고
    • Neural visualization of network traffic data for intrusion detection
    • E. Corchado, and Á Herrero Neural visualization of network traffic data for intrusion detection Appl. Soft Comput. 11 2 2011 2042 2056
    • (2011) Appl. Soft Comput. , vol.11 , Issue.2 , pp. 2042-2056
    • Corchado, E.1    Herrero Á.2
  • 4
    • 0023294428 scopus 로고
    • An intrusion-detection model
    • D. Denning An intrusion-detection model IEEE Trans. Softw. Eng. 2 1987 222 232
    • (1987) IEEE Trans. Softw. Eng. , vol.2 , pp. 222-232
    • Denning, D.1
  • 7
    • 78651547976 scopus 로고    scopus 로고
    • Anomaly detection analysis of intrusion data using supervised & unsupervised approach
    • P. Gogoi, B. Borah, and D.K. Bhattacharyya Anomaly detection analysis of intrusion data using supervised & unsupervised approach J. Converg. Inf. Technol. 5 1 2010 95 110
    • (2010) J. Converg. Inf. Technol. , vol.5 , Issue.1 , pp. 95-110
    • Gogoi, P.1    Borah, B.2    Bhattacharyya, D.K.3
  • 9
    • 0032313923 scopus 로고    scopus 로고
    • Intrusion detection using sequences of system calls
    • S. Hofmeyr, S. Forrest, and A. Somayaji Intrusion detection using sequences of system calls J. Comput. Secur. 6 3 1998 151 180
    • (1998) J. Comput. Secur. , vol.6 , Issue.3 , pp. 151-180
    • Hofmeyr, S.1    Forrest, S.2    Somayaji, A.3
  • 10
  • 12
    • 82255175861 scopus 로고    scopus 로고
    • A differentiated one-class classification method with applications to intrusion detection
    • I. Kang, M. Jeong, and D. Kong A differentiated one-class classification method with applications to intrusion detection Expert Syst. Appl. 39 4 2012 3899 3905
    • (2012) Expert Syst. Appl. , vol.39 , Issue.4 , pp. 3899-3905
    • Kang, I.1    Jeong, M.2    Kong, D.3
  • 13
    • 56949107719 scopus 로고    scopus 로고
    • Multiple criteria mathematical programming for multi-class classification and application in network intrusion detection
    • G. Kou, Y. Peng, Z. Chen, and Y. Shi Multiple criteria mathematical programming for multi-class classification and application in network intrusion detection Inf. Sci. 179 4 2009 371 381
    • (2009) Inf. Sci. , vol.179 , Issue.4 , pp. 371-381
    • Kou, G.1    Peng, Y.2    Chen, Z.3    Shi, Y.4
  • 18
    • 0036321445 scopus 로고    scopus 로고
    • Use of k-nearest neighbor classifier for intrusion detection
    • Y. Liao, and V. Vemuri Use of k-nearest neighbor classifier for intrusion detection Comput. Secur. 21 5 2002 439 448
    • (2002) Comput. Secur. , vol.21 , Issue.5 , pp. 439-448
    • Liao, Y.1    Vemuri, V.2
  • 21
    • 0034301517 scopus 로고    scopus 로고
    • The 1999 darpa off-line intrusion detection evaluation
    • R. Lippmann, J. Haines, D. Fried, J. Korba, and K. Das The 1999 darpa off-line intrusion detection evaluation Comput. Netw. 34 4 2000 579 595
    • (2000) Comput. Netw. , vol.34 , Issue.4 , pp. 579-595
    • Lippmann, R.1    Haines, J.2    Fried, D.3    Korba, J.4    Das, K.5
  • 22
    • 33847410597 scopus 로고    scopus 로고
    • One-class document classification via neural networks
    • L. Manevitz, and M. Yousef One-class document classification via neural networks Neurocomputing 70 7 2007 1466 1481
    • (2007) Neurocomputing , vol.70 , Issue.7 , pp. 1466-1481
    • Manevitz, L.1    Yousef, M.2
  • 23
  • 28
    • 85090433665 scopus 로고    scopus 로고
    • Snort: Lightweight intrusion detection for networks
    • M. Roesch Snort: lightweight intrusion detection for networks LISA 99 1999 229 238
    • (1999) LISA , vol.99 , pp. 229-238
    • Roesch, M.1
  • 34
    • 26944448557 scopus 로고    scopus 로고
    • Anomaly detection in computer security and an application to file system accesses
    • S. Stolfo, S. Hershkop, L. Bui, R. Ferster, and K. Wang Anomaly detection in computer security and an application to file system accesses Found. Intell. Syst. 2005 14 28
    • (2005) Found. Intell. Syst. , pp. 14-28
    • Stolfo, S.1    Hershkop, S.2    Bui, L.3    Ferster, R.4    Wang, K.5
  • 36
    • 68949161842 scopus 로고    scopus 로고
    • A triangle area based nearest neighbors approach to intrusion detection
    • C.-F. Tsai, and C.-Y. Lin A triangle area based nearest neighbors approach to intrusion detection Pattern Recognit. 43 1 2010 222 229
    • (2010) Pattern Recognit. , vol.43 , Issue.1 , pp. 222-229
    • Tsai, C.-F.1    Lin, C.-Y.2
  • 38
    • 33750333036 scopus 로고    scopus 로고
    • Profiling program behavior for anomaly intrusion detection based on the transition and frequency property of computer audit data
    • W. Wang, X. Guan, X. Zhang, and L. Yang Profiling program behavior for anomaly intrusion detection based on the transition and frequency property of computer audit data Comput. Secur. 25 7 2006 539 550
    • (2006) Comput. Secur. , vol.25 , Issue.7 , pp. 539-550
    • Wang, W.1    Guan, X.2    Zhang, X.3    Yang, L.4
  • 40
    • 78651432290 scopus 로고    scopus 로고
    • Intrusion detection using continuous time bayesian networks
    • J. Xu, and C. Shelton Intrusion detection using continuous time bayesian networks J. Artif. Intell. Res. 39 1 2010 745 774
    • (2010) J. Artif. Intell. Res. , vol.39 , Issue.1 , pp. 745-774
    • Xu, J.1    Shelton, C.2
  • 41
    • 0037209446 scopus 로고    scopus 로고
    • Host-based intrusion detection using dynamic and static behavioral models
    • D. Yeung, and Y. Ding Host-based intrusion detection using dynamic and static behavioral models Pattern Recognit. 36 1 2003 229 243
    • (2003) Pattern Recognit. , vol.36 , Issue.1 , pp. 229-243
    • Yeung, D.1    Ding, Y.2
  • 42
    • 21844433474 scopus 로고    scopus 로고
    • Application of online-training svms for real-time intrusion detection with different considerations
    • Z. Zhang, and H. Shen Application of online-training svms for real-time intrusion detection with different considerations Comput. Commun. 28 12 2005 1428 1442
    • (2005) Comput. Commun. , vol.28 , Issue.12 , pp. 1428-1442
    • Zhang, Z.1    Shen, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.