메뉴 건너뛰기




Volumn 25, Issue 7, 2006, Pages 539-550

Profiling program behavior for anomaly intrusion detection based on the transition and frequency property of computer audit data

Author keywords

Anomaly detection; Computer audit data; Computer security; Hidden Markov models; Intrusion detection; Profiling; Self organizing maps

Indexed keywords

COMPUTER AIDED ANALYSIS; COMPUTER CRIME; DATA REDUCTION; DATA STRUCTURES; MARKOV PROCESSES; SELF ORGANIZING MAPS;

EID: 33750333036     PISSN: 01674048     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cose.2006.05.005     Document Type: Article
Times cited : (68)

References (30)
  • 2
    • 0242289557 scopus 로고    scopus 로고
    • A rough set theory based method for anomaly intrusion detection in computer networks
    • Cai Z., Guan X., Shao P., Peng Q., and Sun G. A rough set theory based method for anomaly intrusion detection in computer networks. Expert Systems 18 5 (2003) 251-259
    • (2003) Expert Systems , vol.18 , Issue.5 , pp. 251-259
    • Cai, Z.1    Guan, X.2    Shao, P.3    Peng, Q.4    Sun, G.5
  • 3
    • 33750311766 scopus 로고    scopus 로고
    • CERT Advisory CA-2001-07 file globbing vulnerabilities in various FTP servers. ; 2001 [retrieved May 2001].
  • 4
    • 0037282635 scopus 로고    scopus 로고
    • Efficient anomaly detection by modeling privilege flows using hidden Markov model
    • Cho S.B., and Park H.J. Efficient anomaly detection by modeling privilege flows using hidden Markov model. Computers & Security 22 1 (2003) 45-55
    • (2003) Computers & Security , vol.22 , Issue.1 , pp. 45-55
    • Cho, S.B.1    Park, H.J.2
  • 7
    • 2342576784 scopus 로고    scopus 로고
    • Predicting the intrusion intentions by observing system call sequences
    • Feng L., Guan X., Guo S., Gao Y., and Liu P. Predicting the intrusion intentions by observing system call sequences. Computers & Security 23 5 (2004) 241-252
    • (2004) Computers & Security , vol.23 , Issue.5 , pp. 241-252
    • Feng, L.1    Guan, X.2    Guo, S.3    Gao, Y.4    Liu, P.5
  • 8
    • 0029716418 scopus 로고    scopus 로고
    • Forrest S, Hofmeyr SA, Somayaji A, Longstaff TA. A sense of self for Unix processes. In: Proceedings of the 1996 IEEE symposium on research in security and privacy. Los Alamos, CA; 1996. p. 120-8.
  • 9
    • 33750342581 scopus 로고    scopus 로고
    • Hu W, Liao Y, Vemuri VR. Robust support vector machines for anomaly detection in computer security. In: Proceeding of the 2003 international conference on machine learning and applications (ICMLA'03). Los Angeles, California; 2003.
  • 10
    • 0035616570 scopus 로고    scopus 로고
    • A hybrid high-order Markov chain model for computer intrusion detection
    • Ju W.H., and Vardi Y. A hybrid high-order Markov chain model for computer intrusion detection. Journal of Computational and Graphical Statistics 10 2 (2001) 277-295
    • (2001) Journal of Computational and Graphical Statistics , vol.10 , Issue.2 , pp. 277-295
    • Ju, W.H.1    Vardi, Y.2
  • 11
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen T. The self-organizing map. Proceedings of the IEEE 78 (1990) 1464-1480
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1464-1480
    • Kohonen, T.1
  • 13
    • 0034836392 scopus 로고    scopus 로고
    • Lee W, Xiang D. Information-theoretic measures for anomaly detection. In: Proceedings of the 2001 IEEE symposium on security and privacy. Oakland, CA, USA; 2001. p. 130-43.
  • 14
    • 33750288487 scopus 로고    scopus 로고
    • Lee W, Stolfo S, Chan P. Learning patterns from Unix process execution traces for intrusion detection. AAAI Workshop: AI approaches to fraud detection and risk management; 1997.
  • 15
    • 0036321445 scopus 로고    scopus 로고
    • Use of k-nearest neighbor classifier for intrusion detection
    • Liao Y.H., and Vemuri V.R. Use of k-nearest neighbor classifier for intrusion detection. Computer & Security 21 5 (2002) 439-448
    • (2002) Computer & Security , vol.21 , Issue.5 , pp. 439-448
    • Liao, Y.H.1    Vemuri, V.R.2
  • 17
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proceeding of the IEEE 77 2 (1989)
    • (1989) Proceeding of the IEEE , vol.77 , Issue.2
    • Rabiner, L.R.1
  • 19
    • 35248842651 scopus 로고    scopus 로고
    • Ramadas M, Ostermann S, Tjaden B. Detecting anomalous network traffic with self-organizing maps. In: Proceedings of sixth international symposium on recent advances in intrusion detection (RAID 2003). Pittsburgh, Pennsylvania; 2003. p. 36-54.
  • 21
    • 0024122965 scopus 로고    scopus 로고
    • Smaha SE. Haystack: an intrusion detection system. In: Proceedings of the IEEE fourth aerospace computer security applications conference; 1988.
  • 22
    • 6344239144 scopus 로고    scopus 로고
    • Wang W, Guan X, Zhang X. Modeling program behaviors by hidden Markov models for intrusion detection. In: Proceedings of the third international conference on machine learning and cybernetics (ICMLC 2004); 2004a. p. 2830-5.
  • 23
    • 85128554764 scopus 로고    scopus 로고
    • Wang W, Guan X, Zhang X. Profiling program and user behaviors for anomaly intrusion detection based on non-negative matrix factorization. In: Proceedings of 43rd IEEE conference on control and decision, Atlantis, Paradise Island, Bahamas; 2004b. p. 99-104.
  • 24
    • 21144450811 scopus 로고    scopus 로고
    • Wang W, Guan X, Zhang X. A novel intrusion detection method based on principal component analysis in computer security. In: Advances in neural networks-ISNN2004. International IEEE symposium on neural networks, Dalian, China. Lecture notes in computer science (LNCS), No. 3174; 2004c. p. 657-62.
  • 25
    • 84880174811 scopus 로고    scopus 로고
    • Warrender C, Forrest S, Pearlmutter B. Detecting Intrusions using system calls: alternative data models. In: Proceedings of 1999 IEEE symposium on security and privacy; 1999. p.133-45.
  • 26
    • 33750364840 scopus 로고    scopus 로고
    • Wespi A, Dacier M, Debar H. Intrusion detection using variable-length audit trail patterns. In: Proceedings of the third international workshop on the recent advances in intrusion detection (RAID'2000), No. 1907 in LNCS; 2000.
  • 27
    • 0037142572 scopus 로고    scopus 로고
    • An anomaly intrusion detection method based on HMM
    • Yan Q., Xie W., Yan B., and Song G. An anomaly intrusion detection method based on HMM. Electronics Letters 38 13 (2002) 663-664
    • (2002) Electronics Letters , vol.38 , Issue.13 , pp. 663-664
    • Yan, Q.1    Xie, W.2    Yan, B.3    Song, G.4
  • 28
    • 1942436335 scopus 로고    scopus 로고
    • Robustness of the Markov chain model for cyber attack detection
    • Ye N., Zhang Y., and Borror C.M. Robustness of the Markov chain model for cyber attack detection. IEEE Transactions on Reliability 53 1 (2004) 116-121
    • (2004) IEEE Transactions on Reliability , vol.53 , Issue.1 , pp. 116-121
    • Ye, N.1    Zhang, Y.2    Borror, C.M.3
  • 29
    • 0037209446 scopus 로고    scopus 로고
    • Host-based intrusion detection using dynamic and static behavioral models
    • Yeung D.Y., and Ding Y. Host-based intrusion detection using dynamic and static behavioral models. Pattern Recognition 36 1 (2003) 229-243
    • (2003) Pattern Recognition , vol.36 , Issue.1 , pp. 229-243
    • Yeung, D.Y.1    Ding, Y.2
  • 30
    • 21844433474 scopus 로고    scopus 로고
    • Application of online-training SVMs for real-time intrusion detection with different considerations
    • Zhang Z., and Shen H. Application of online-training SVMs for real-time intrusion detection with different considerations. Computer Communications 28 (2005) 1428-1442
    • (2005) Computer Communications , vol.28 , pp. 1428-1442
    • Zhang, Z.1    Shen, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.