-
1
-
-
84901254757
-
A positive role for PERIOD in mammalian circadian gene expression
-
Akashi M., Okamoto A., Tsuchiya Y., Todo T., Nishida E., Node K. A positive role for PERIOD in mammalian circadian gene expression. Cell Rep 2014, 7(4):1056-1064. 10.1016/j.celrep.2014.03.072.
-
(2014)
Cell Rep
, vol.7
, Issue.4
, pp. 1056-1064
-
-
Akashi, M.1
Okamoto, A.2
Tsuchiya, Y.3
Todo, T.4
Nishida, E.5
Node, K.6
-
2
-
-
84856482542
-
An automaton model for the cell cycle
-
Altinok A., Gonze D., Lévi F., Goldbeter A. An automaton model for the cell cycle. Interface Focus 2011, 1:36-47.
-
(2011)
Interface Focus
, vol.1
, pp. 36-47
-
-
Altinok, A.1
Gonze, D.2
Lévi, F.3
Goldbeter, A.4
-
3
-
-
12244277104
-
Modeling feedback loops of the mammalian circadian oscillator
-
Becker-Weimann S., Wolf J., Herzel H., Kramer A. Modeling feedback loops of the mammalian circadian oscillator. Biophys. J. 2004, 87(5):3023-3034.
-
(2004)
Biophys. J.
, vol.87
, Issue.5
, pp. 3023-3034
-
-
Becker-Weimann, S.1
Wolf, J.2
Herzel, H.3
Kramer, A.4
-
4
-
-
34447508363
-
Why do cells cycle with a 24 hour period?
-
Bernard S., Herzel H. Why do cells cycle with a 24 hour period?. Genome Inf. 2006, 17(1):72-79.
-
(2006)
Genome Inf.
, vol.17
, Issue.1
, pp. 72-79
-
-
Bernard, S.1
Herzel, H.2
-
5
-
-
77950854528
-
Tumor growth rate determines the timing of optimal chronomodulated treatment schedules
-
Bernard S., Bernad B.C., Lévi F., Herzel H. Tumor growth rate determines the timing of optimal chronomodulated treatment schedules. PLoS Comput. Biol. 2010, 6:e1000712.
-
(2010)
PLoS Comput. Biol.
, vol.6
, pp. e1000712
-
-
Bernard, S.1
Bernad, B.C.2
Lévi, F.3
Herzel, H.4
-
6
-
-
42149136787
-
An age-and-cyclin-structured cell population model for healthy and tumoral tissues
-
Brikci F., Clairambault J., Ribba B., Perthame B. An age-and-cyclin-structured cell population model for healthy and tumoral tissues. J. Math. Biol. 2007, 57:91-110.
-
(2007)
J. Math. Biol.
, vol.57
, pp. 91-110
-
-
Brikci, F.1
Clairambault, J.2
Ribba, B.3
Perthame, B.4
-
7
-
-
40249088253
-
Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle
-
Brikci F., Clairambault J., Perthame B. Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle. Math. Comput. Model. 2008, 47:699-713.
-
(2008)
Math. Comput. Model.
, vol.47
, pp. 699-713
-
-
Brikci, F.1
Clairambault, J.2
Perthame, B.3
-
8
-
-
23944470712
-
Circadian clock control by SUMOylation of BMAL1
-
Cardone L., Hirayama J., Giordanao F., Tamaru T., Palvino J., Sassone-Corsi P. Circadian clock control by SUMOylation of BMAL1. Science 2005, 309:1390-1394.
-
(2005)
Science
, vol.309
, pp. 1390-1394
-
-
Cardone, L.1
Hirayama, J.2
Giordanao, F.3
Tamaru, T.4
Palvino, J.5
Sassone-Corsi, P.6
-
9
-
-
79958176329
-
Regulation of mammalian cell cycle progression in the regenrating liver
-
Chauhan A., Lorenzen S., Herzel H., Bernard S. Regulation of mammalian cell cycle progression in the regenrating liver. J. Theor. Biol. 2011, 283:103-112.
-
(2011)
J. Theor. Biol.
, vol.283
, pp. 103-112
-
-
Chauhan, A.1
Lorenzen, S.2
Herzel, H.3
Bernard, S.4
-
10
-
-
37549030498
-
A conserved DNA damage response pathway responsible for coupling the cell division cycle to the circadian and metabolic cycles
-
Chen Z., McKnight S. A conserved DNA damage response pathway responsible for coupling the cell division cycle to the circadian and metabolic cycles. Cell Cycle 2007, 6(23):2906-2912.
-
(2007)
Cell Cycle
, vol.6
, Issue.23
, pp. 2906-2912
-
-
Chen, Z.1
McKnight, S.2
-
11
-
-
77950847287
-
Comparison of Perron and Floquet eigenvalues in age structured cell division models
-
Clairambault J., Gaubert S., Lepoutre T. Comparison of Perron and Floquet eigenvalues in age structured cell division models. Math. Comput. Model. 2009, 4:183-209.
-
(2009)
Math. Comput. Model.
, vol.4
, pp. 183-209
-
-
Clairambault, J.1
Gaubert, S.2
Lepoutre, T.3
-
13
-
-
67650875133
-
Analysis of a population model structured by the cells molecular content
-
Doumic M. Analysis of a population model structured by the cells molecular content. Math. Model. Nat. Phenom. 2007, 2:121-152.
-
(2007)
Math. Model. Nat. Phenom.
, vol.2
, pp. 121-152
-
-
Doumic, M.1
-
16
-
-
84904012704
-
Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle
-
Feillet C., et al. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc. Natl. Acad. Sci. 2014, 111(27):9828-9833.
-
(2014)
Proc. Natl. Acad. Sci.
, vol.111
, Issue.27
, pp. 9828-9833
-
-
Feillet, C.1
-
17
-
-
0036567347
-
Host circadian clock as a control point in tumor progression
-
Filipski E., King V., Li X., Granda T., Mormont M., Liu X., Claustrat B., Hastings M., Lévi F. Host circadian clock as a control point in tumor progression. J. Natl. Cancer. Inst. 2002, 94:690-697.
-
(2002)
J. Natl. Cancer. Inst.
, vol.94
, pp. 690-697
-
-
Filipski, E.1
King, V.2
Li, X.3
Granda, T.4
Mormont, M.5
Liu, X.6
Claustrat, B.7
Hastings, M.8
Lévi, F.9
-
18
-
-
7444245092
-
Effects of chronic jet lag on tumor progression in mice
-
Filipski E., Delaunay F., King V., Wu M.-W., Claustrat B., Gréchez-Cassiau A., Guettier C., Hastings M., Lévi F. Effects of chronic jet lag on tumor progression in mice. Cancer Res. 2004, 64:7879-7885.
-
(2004)
Cancer Res.
, vol.64
, pp. 7879-7885
-
-
Filipski, E.1
Delaunay, F.2
King, V.3
Wu, M.-W.4
Claustrat, B.5
Gréchez-Cassiau, A.6
Guettier, C.7
Hastings, M.8
Lévi, F.9
-
19
-
-
72449199372
-
Circadian disruption accelerates liver carcinogenesis in mice
-
Filipski E., Subramanian P., Carriére J., Guettier C., Barbason H., Lévi F. Circadian disruption accelerates liver carcinogenesis in mice. Mutat. Res. 2009, 680:95-105.
-
(2009)
Mutat. Res.
, vol.680
, pp. 95-105
-
-
Filipski, E.1
Subramanian, P.2
Carriére, J.3
Guettier, C.4
Barbason, H.5
Lévi, F.6
-
20
-
-
0029123356
-
Circadian rhythms and cancer chemotherapy
-
Focan C. Circadian rhythms and cancer chemotherapy. Pharmacol. Ther. 1995, 67:1-52.
-
(1995)
Pharmacol. Ther.
, vol.67
, pp. 1-52
-
-
Focan, C.1
-
21
-
-
0033113082
-
Continuous delivery of venous 5-fluorouracil and arterial 5-fluorodeoxyuridine for hepatic metastases from colorectal cancer. feasibility and tolerance in a randomized phase II trial comparing flat versus chronomodulated infusion
-
Focan C., Lévi F., Kreutz F. Continuous delivery of venous 5-fluorouracil and arterial 5-fluorodeoxyuridine for hepatic metastases from colorectal cancer. feasibility and tolerance in a randomized phase II trial comparing flat versus chronomodulated infusion. Anticancer Drugs 1999, 10:385-392.
-
(1999)
Anticancer Drugs
, vol.10
, pp. 385-392
-
-
Focan, C.1
Lévi, F.2
Kreutz, F.3
-
22
-
-
0034002134
-
Chronotherapy with 5-fluorouracil, folinic acid and carboplatin for metastatic colorectal cancer; an interesting therapeutic index in a phase II trial
-
Focan C., Kreutz F., Focan-Henrard D., Moeneclaey N. Chronotherapy with 5-fluorouracil, folinic acid and carboplatin for metastatic colorectal cancer; an interesting therapeutic index in a phase II trial. Eur. J. Cancer 2000, 36:341-347.
-
(2000)
Eur. J. Cancer
, vol.36
, pp. 341-347
-
-
Focan, C.1
Kreutz, F.2
Focan-Henrard, D.3
Moeneclaey, N.4
-
23
-
-
0344736694
-
A detailed predictive model of the mammalian circadian clock
-
Forger D.B., Peskin C.S. A detailed predictive model of the mammalian circadian clock. Proc. Natl. Acad. Sci. 2003, 100(25):14806-14811.
-
(2003)
Proc. Natl. Acad. Sci.
, vol.100
, Issue.25
, pp. 14806-14811
-
-
Forger, D.B.1
Peskin, C.S.2
-
24
-
-
0037020198
-
The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo
-
Fu L., Pelicano H., Liu J., Huang P., Lee C. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 2002, 11:41-50.
-
(2002)
Cell
, vol.11
, pp. 41-50
-
-
Fu, L.1
Pelicano, H.2
Liu, J.3
Huang, P.4
Lee, C.5
-
25
-
-
84863643126
-
Entrainment of the mammalian cell cycle by the circadian clock. modeling two coupled cellular rhythms
-
Gérard C., Goldbeter A. Entrainment of the mammalian cell cycle by the circadian clock. modeling two coupled cellular rhythms. PLoS Comput. Biol. 2012, 8(5):e1002516.
-
(2012)
PLoS Comput. Biol.
, vol.8
, Issue.5
, pp. e1002516
-
-
Gérard, C.1
Goldbeter, A.2
-
26
-
-
33646084831
-
The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells
-
Gery S., Komatsu N., Baldjyan L., Yu A., Koo D., Koeffler H. The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol. Cell 2006, 22:375-382.
-
(2006)
Mol. Cell
, vol.22
, pp. 375-382
-
-
Gery, S.1
Komatsu, N.2
Baldjyan, L.3
Yu, A.4
Koo, D.5
Koeffler, H.6
-
27
-
-
80052281434
-
Modeling circadian clocks. from equations to oscillations
-
Gonze D. Modeling circadian clocks. from equations to oscillations. Cent. Eur. J. Biol. 2011, 6:699-711.
-
(2011)
Cent. Eur. J. Biol.
, vol.6
, pp. 699-711
-
-
Gonze, D.1
-
29
-
-
0006369934
-
The application of circadian chronobiology to cancer chemotherapy.
-
Hrushesky, W., Bjarnason, G., 1993. The application of circadian chronobiology to cancer chemotherapy. Cancer 2666-2686.
-
(1993)
Cancer
, pp. 2666-2686
-
-
Hrushesky, W.1
Bjarnason, G.2
-
30
-
-
34247515224
-
Riding tandem. circadian clocks and the cell cycle
-
Hunt T., Sassone-Corsi P. Riding tandem. circadian clocks and the cell cycle. Cell 2007, 129:461-464.
-
(2007)
Cell
, vol.129
, pp. 461-464
-
-
Hunt, T.1
Sassone-Corsi, P.2
-
31
-
-
77958489353
-
Circadian clocks and cell division. What's the pacemaker?
-
Johnson C. Circadian clocks and cell division. What's the pacemaker?. Cell Cycle 2010, 9:3864-3873.
-
(2010)
Cell Cycle
, vol.9
, pp. 3864-3873
-
-
Johnson, C.1
-
32
-
-
33748767394
-
Prospective cohort study of the risk of prostate cancer among rotating-shift workers. findings from the japan collaborative cohort study
-
Kubo T., Ozasa K., Mikami K., Wakai K., Fujino Y., Watanabe Y., Miki T., Nakao M., Hayashi K., Suzuki K., Mori M., Washio M., Sakauchi F., Ito Y., Yoshimura T., Tamakoshi A. Prospective cohort study of the risk of prostate cancer among rotating-shift workers. findings from the japan collaborative cohort study. Am. J. Epidemiol. 2006, 164(6):549-555.
-
(2006)
Am. J. Epidemiol.
, vol.164
, Issue.6
, pp. 549-555
-
-
Kubo, T.1
Ozasa, K.2
Mikami, K.3
Wakai, K.4
Fujino, Y.5
Watanabe, Y.6
Miki, T.7
Nakao, M.8
Hayashi, K.9
Suzuki, K.10
Mori, M.11
Washio, M.12
Sakauchi, F.13
Ito, Y.14
Yoshimura, T.15
Tamakoshi, A.16
-
33
-
-
43749084373
-
Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK
-
Langmesser S., Tallone T., Bordon A., Rusconi S., Albrecht U. Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK. BMC Mol. Biol. 2008, 9:41-57.
-
(2008)
BMC Mol. Biol.
, vol.9
, pp. 41-57
-
-
Langmesser, S.1
Tallone, T.2
Bordon, A.3
Rusconi, S.4
Albrecht, U.5
-
34
-
-
0035966317
-
Posttranslational mechanisms regulate the mammalian circadian clock
-
Lee C., Etchegaray J., Cagampang F., Loudon A., Reppert S. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 2001, 107:855-867.
-
(2001)
Cell
, vol.107
, pp. 855-867
-
-
Lee, C.1
Etchegaray, J.2
Cagampang, F.3
Loudon, A.4
Reppert, S.5
-
35
-
-
4444301677
-
Modeling the mammalian circadian clock. sensitivity analysis and multiplicity of oscillatory mechanisms
-
Leloup J.-C., Goldbeter A. Modeling the mammalian circadian clock. sensitivity analysis and multiplicity of oscillatory mechanisms. J. Theor. Biol. 2004, 230:541-562.
-
(2004)
J. Theor. Biol.
, vol.230
, pp. 541-562
-
-
Leloup, J.-C.1
Goldbeter, A.2
-
36
-
-
0033643122
-
Therapeutic implications of circadian rhythms in cancer patients
-
Lévi F. Therapeutic implications of circadian rhythms in cancer patients. Novartis Found. Symp. 2000, 227:136-142.
-
(2000)
Novartis Found. Symp.
, vol.227
, pp. 136-142
-
-
Lévi, F.1
-
37
-
-
0141889955
-
Control mechanism of the circadian clock for timing of cell division in vivo
-
Matsuo T., Yamaguchi S., Mitsui S., Emi A., Shimoda F., Okamura H. Control mechanism of the circadian clock for timing of cell division in vivo. Science 2003, 302:255-259.
-
(2003)
Science
, vol.302
, pp. 255-259
-
-
Matsuo, T.1
Yamaguchi, S.2
Mitsui, S.3
Emi, A.4
Shimoda, F.5
Okamura, H.6
-
38
-
-
75549087930
-
Bionumbers
-
(BNID 100685)
-
Milo, et al. Bionumbers. Nucl. Acids Res. 2010, 38:D750-D753. (BNID 100685).
-
(2010)
Nucl. Acids Res.
, vol.38
, pp. D750-D753
-
-
Milo1
-
39
-
-
67651115789
-
A model of the cell-autonomous mammalian circadian clock
-
Mirsky H., Liu A., Welsh D., Kay S., Doyle F. A model of the cell-autonomous mammalian circadian clock. Proc. Natl. Acad. Sci. 2009, 106:11107-11112.
-
(2009)
Proc. Natl. Acad. Sci.
, vol.106
, pp. 11107-11112
-
-
Mirsky, H.1
Liu, A.2
Welsh, D.3
Kay, S.4
Doyle, F.5
-
40
-
-
0028931265
-
Principles of cdk regulation
-
Morgan D. Principles of cdk regulation. Nature 1995, 374:131-134.
-
(1995)
Nature
, vol.374
, pp. 131-134
-
-
Morgan, D.1
-
42
-
-
8844256589
-
Circadian gene expression in individual fibroblasts. cell-autonomous and self-sustained oscillators pass time to daughter cells
-
Nagoshi E., Saini C., Bauer C., Laroche T., Naef F., et al. Circadian gene expression in individual fibroblasts. cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 2004, 119:693-705.
-
(2004)
Cell
, vol.119
, pp. 693-705
-
-
Nagoshi, E.1
Saini, C.2
Bauer, C.3
Laroche, T.4
Naef, F.5
-
43
-
-
0035579883
-
Mathematical model of the cell division cycle of fission yeast
-
Novak B., Pataki Z., Ciliberto A., Tyson J. Mathematical model of the cell division cycle of fission yeast. Chaos 2001, 11(1):277-286.
-
(2001)
Chaos
, vol.11
, Issue.1
, pp. 277-286
-
-
Novak, B.1
Pataki, Z.2
Ciliberto, A.3
Tyson, J.4
-
44
-
-
0037108057
-
Disruption of mCry 2 restores circadian rhythmicity in mPer 2 mutant mice
-
Oster H., Yasui A., van der Horst G., Albrecht U. Disruption of mCry 2 restores circadian rhythmicity in mPer 2 mutant mice. Genes Dev. 2002, 16:2633-2638.
-
(2002)
Genes Dev.
, vol.16
, pp. 2633-2638
-
-
Oster, H.1
Yasui, A.2
van der Horst, G.3
Albrecht, U.4
-
45
-
-
78349312462
-
Coupling cellular oscillators-circadian and cell division cycles in cyanobacteria
-
Pando B., van Oudenaarden A. Coupling cellular oscillators-circadian and cell division cycles in cyanobacteria. Curr. Opin. Genet. Dev. 2010, 20:613-618.
-
(2010)
Curr. Opin. Genet. Dev.
, vol.20
, pp. 613-618
-
-
Pando, B.1
van Oudenaarden, A.2
-
46
-
-
33745918016
-
Posttranslational regulation of mammalian circadian clock by chryptochrome and protein phosphatase 5
-
Partch C., Shields K., Thompson C., Selby C., Sancar A. Posttranslational regulation of mammalian circadian clock by chryptochrome and protein phosphatase 5. Proc. Acad. Sci. USA 2006, 103:10467-10472.
-
(2006)
Proc. Acad. Sci. USA
, vol.103
, pp. 10467-10472
-
-
Partch, C.1
Shields, K.2
Thompson, C.3
Selby, C.4
Sancar, A.5
-
47
-
-
0004233119
-
-
Cambridge University Press, New York, USA
-
Pikovsky A., Rosenblum M., Kurths J. Synchronization 2001, Cambridge University Press, New York, USA.
-
(2001)
Synchronization
-
-
Pikovsky, A.1
Rosenblum, M.2
Kurths, J.3
-
48
-
-
0037194790
-
Coordination of circadian timing in mammals
-
Reppert S., Weaver D. Coordination of circadian timing in mammals. Nature 2002, 418:935-941.
-
(2002)
Nature
, vol.418
, pp. 935-941
-
-
Reppert, S.1
Weaver, D.2
-
49
-
-
33644625748
-
Feedback repression is required for mammalian circadian clock function
-
Sato T., Yamada R., Ukai H., Baggs J., Miraglia L., Kobayashi T., et al. Feedback repression is required for mammalian circadian clock function. Nat. Genet. 2006, 38:212-219.
-
(2006)
Nat. Genet.
, vol.38
, pp. 212-219
-
-
Sato, T.1
Yamada, R.2
Ukai, H.3
Baggs, J.4
Miraglia, L.5
Kobayashi, T.6
-
50
-
-
84869125804
-
Circadian rhythm disruption in cancer biology
-
Savvidis C., Koutsilieris M. Circadian rhythm disruption in cancer biology. Mol. Med. 2012, 18(1):1249-1260.
-
(2012)
Mol. Med.
, vol.18
, Issue.1
, pp. 1249-1260
-
-
Savvidis, C.1
Koutsilieris, M.2
-
51
-
-
0034640253
-
Interacting molecular loops in the mammalian circadian clock
-
Shearman L., Sriram S., Weaver D., Maywood E., Chaves I., Zheng B., Kume K., Lee C., van der Horst T., Hastings M., Reppert S. Interacting molecular loops in the mammalian circadian clock. Science 2000, 288:1013-1019.
-
(2000)
Science
, vol.288
, pp. 1013-1019
-
-
Shearman, L.1
Sriram, S.2
Weaver, D.3
Maywood, E.4
Chaves, I.5
Zheng, B.6
Kume, K.7
Lee, C.8
van der Horst, T.9
Hastings, M.10
Reppert, S.11
-
52
-
-
27944487902
-
Logic of the yeast metabolic cycle. temporal compartmentalization of cellular processes
-
Tu B., Kudlicki A., Rowicka M., Mcknight S. Logic of the yeast metabolic cycle. temporal compartmentalization of cellular processes. Science 2005, 310:1152-1158.
-
(2005)
Science
, vol.310
, pp. 1152-1158
-
-
Tu, B.1
Kudlicki, A.2
Rowicka, M.3
Mcknight, S.4
-
53
-
-
77949826561
-
Circadian gating of the cell cycle revealed in single cyanobacterial cells
-
Yang C., Bernardo F., Dong G., Golden S., van Oudenaarden A. Circadian gating of the cell cycle revealed in single cyanobacterial cells. Science 2010, 327:1522-1526.
-
(2010)
Science
, vol.327
, pp. 1522-1526
-
-
Yang, C.1
Bernardo, F.2
Dong, G.3
Golden, S.4
van Oudenaarden, A.5
-
54
-
-
0036290425
-
Interacting feedback loops within the mammalian clock. BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2
-
Yu W., Nomura M., Ikeda M. Interacting feedback loops within the mammalian clock. BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2. Biochem. Biophys. Res. Commun. 2002, 290(3):933-941.
-
(2002)
Biochem. Biophys. Res. Commun.
, vol.290
, Issue.3
, pp. 933-941
-
-
Yu, W.1
Nomura, M.2
Ikeda, M.3
-
55
-
-
36148997654
-
Computational analysis of mammalian cell division gated by a circadian clock. quantized cell cycles and cell size
-
Zamborszky J., Csikasz-Nagy A., Hong C. Computational analysis of mammalian cell division gated by a circadian clock. quantized cell cycles and cell size. J. Biol. Rhythms 2007, 22:542-553.
-
(2007)
J. Biol. Rhythms
, vol.22
, pp. 542-553
-
-
Zamborszky, J.1
Csikasz-Nagy, A.2
Hong, C.3
|