메뉴 건너뛰기




Volumn 363, Issue , 2014, Pages 318-331

Modeling circadian clock-cell cycle interaction effects on cell population growth rates

Author keywords

Age structured equations; Chronotherapy

Indexed keywords

CELL PROTEIN; PROTEIN WEE1; UNCLASSIFIED DRUG; ARNTL PROTEIN, HUMAN; CELL CYCLE PROTEIN; CIRCADIAN RHYTHM SIGNALING PROTEIN; CRY1 PROTEIN, HUMAN; CRY2 PROTEIN, HUMAN; CRYPTOCHROME; NUCLEAR PROTEIN; PER2 PROTEIN, HUMAN; PROTEIN TYROSINE KINASE; TRANSCRIPTION FACTOR ARNTL; WEE1 PROTEIN, HUMAN;

EID: 84907480712     PISSN: 00225193     EISSN: 10958541     Source Type: Journal    
DOI: 10.1016/j.jtbi.2014.08.008     Document Type: Article
Times cited : (18)

References (55)
  • 1
    • 84901254757 scopus 로고    scopus 로고
    • A positive role for PERIOD in mammalian circadian gene expression
    • Akashi M., Okamoto A., Tsuchiya Y., Todo T., Nishida E., Node K. A positive role for PERIOD in mammalian circadian gene expression. Cell Rep 2014, 7(4):1056-1064. 10.1016/j.celrep.2014.03.072.
    • (2014) Cell Rep , vol.7 , Issue.4 , pp. 1056-1064
    • Akashi, M.1    Okamoto, A.2    Tsuchiya, Y.3    Todo, T.4    Nishida, E.5    Node, K.6
  • 3
    • 12244277104 scopus 로고    scopus 로고
    • Modeling feedback loops of the mammalian circadian oscillator
    • Becker-Weimann S., Wolf J., Herzel H., Kramer A. Modeling feedback loops of the mammalian circadian oscillator. Biophys. J. 2004, 87(5):3023-3034.
    • (2004) Biophys. J. , vol.87 , Issue.5 , pp. 3023-3034
    • Becker-Weimann, S.1    Wolf, J.2    Herzel, H.3    Kramer, A.4
  • 4
    • 34447508363 scopus 로고    scopus 로고
    • Why do cells cycle with a 24 hour period?
    • Bernard S., Herzel H. Why do cells cycle with a 24 hour period?. Genome Inf. 2006, 17(1):72-79.
    • (2006) Genome Inf. , vol.17 , Issue.1 , pp. 72-79
    • Bernard, S.1    Herzel, H.2
  • 5
    • 77950854528 scopus 로고    scopus 로고
    • Tumor growth rate determines the timing of optimal chronomodulated treatment schedules
    • Bernard S., Bernad B.C., Lévi F., Herzel H. Tumor growth rate determines the timing of optimal chronomodulated treatment schedules. PLoS Comput. Biol. 2010, 6:e1000712.
    • (2010) PLoS Comput. Biol. , vol.6 , pp. e1000712
    • Bernard, S.1    Bernad, B.C.2    Lévi, F.3    Herzel, H.4
  • 6
    • 42149136787 scopus 로고    scopus 로고
    • An age-and-cyclin-structured cell population model for healthy and tumoral tissues
    • Brikci F., Clairambault J., Ribba B., Perthame B. An age-and-cyclin-structured cell population model for healthy and tumoral tissues. J. Math. Biol. 2007, 57:91-110.
    • (2007) J. Math. Biol. , vol.57 , pp. 91-110
    • Brikci, F.1    Clairambault, J.2    Ribba, B.3    Perthame, B.4
  • 7
    • 40249088253 scopus 로고    scopus 로고
    • Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle
    • Brikci F., Clairambault J., Perthame B. Analysis of a molecular structured population model with possible polynomial growth for the cell division cycle. Math. Comput. Model. 2008, 47:699-713.
    • (2008) Math. Comput. Model. , vol.47 , pp. 699-713
    • Brikci, F.1    Clairambault, J.2    Perthame, B.3
  • 9
    • 79958176329 scopus 로고    scopus 로고
    • Regulation of mammalian cell cycle progression in the regenrating liver
    • Chauhan A., Lorenzen S., Herzel H., Bernard S. Regulation of mammalian cell cycle progression in the regenrating liver. J. Theor. Biol. 2011, 283:103-112.
    • (2011) J. Theor. Biol. , vol.283 , pp. 103-112
    • Chauhan, A.1    Lorenzen, S.2    Herzel, H.3    Bernard, S.4
  • 10
    • 37549030498 scopus 로고    scopus 로고
    • A conserved DNA damage response pathway responsible for coupling the cell division cycle to the circadian and metabolic cycles
    • Chen Z., McKnight S. A conserved DNA damage response pathway responsible for coupling the cell division cycle to the circadian and metabolic cycles. Cell Cycle 2007, 6(23):2906-2912.
    • (2007) Cell Cycle , vol.6 , Issue.23 , pp. 2906-2912
    • Chen, Z.1    McKnight, S.2
  • 11
    • 77950847287 scopus 로고    scopus 로고
    • Comparison of Perron and Floquet eigenvalues in age structured cell division models
    • Clairambault J., Gaubert S., Lepoutre T. Comparison of Perron and Floquet eigenvalues in age structured cell division models. Math. Comput. Model. 2009, 4:183-209.
    • (2009) Math. Comput. Model. , vol.4 , pp. 183-209
    • Clairambault, J.1    Gaubert, S.2    Lepoutre, T.3
  • 13
    • 67650875133 scopus 로고    scopus 로고
    • Analysis of a population model structured by the cells molecular content
    • Doumic M. Analysis of a population model structured by the cells molecular content. Math. Model. Nat. Phenom. 2007, 2:121-152.
    • (2007) Math. Model. Nat. Phenom. , vol.2 , pp. 121-152
    • Doumic, M.1
  • 16
    • 84904012704 scopus 로고    scopus 로고
    • Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle
    • Feillet C., et al. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc. Natl. Acad. Sci. 2014, 111(27):9828-9833.
    • (2014) Proc. Natl. Acad. Sci. , vol.111 , Issue.27 , pp. 9828-9833
    • Feillet, C.1
  • 20
    • 0029123356 scopus 로고
    • Circadian rhythms and cancer chemotherapy
    • Focan C. Circadian rhythms and cancer chemotherapy. Pharmacol. Ther. 1995, 67:1-52.
    • (1995) Pharmacol. Ther. , vol.67 , pp. 1-52
    • Focan, C.1
  • 21
    • 0033113082 scopus 로고    scopus 로고
    • Continuous delivery of venous 5-fluorouracil and arterial 5-fluorodeoxyuridine for hepatic metastases from colorectal cancer. feasibility and tolerance in a randomized phase II trial comparing flat versus chronomodulated infusion
    • Focan C., Lévi F., Kreutz F. Continuous delivery of venous 5-fluorouracil and arterial 5-fluorodeoxyuridine for hepatic metastases from colorectal cancer. feasibility and tolerance in a randomized phase II trial comparing flat versus chronomodulated infusion. Anticancer Drugs 1999, 10:385-392.
    • (1999) Anticancer Drugs , vol.10 , pp. 385-392
    • Focan, C.1    Lévi, F.2    Kreutz, F.3
  • 22
    • 0034002134 scopus 로고    scopus 로고
    • Chronotherapy with 5-fluorouracil, folinic acid and carboplatin for metastatic colorectal cancer; an interesting therapeutic index in a phase II trial
    • Focan C., Kreutz F., Focan-Henrard D., Moeneclaey N. Chronotherapy with 5-fluorouracil, folinic acid and carboplatin for metastatic colorectal cancer; an interesting therapeutic index in a phase II trial. Eur. J. Cancer 2000, 36:341-347.
    • (2000) Eur. J. Cancer , vol.36 , pp. 341-347
    • Focan, C.1    Kreutz, F.2    Focan-Henrard, D.3    Moeneclaey, N.4
  • 23
    • 0344736694 scopus 로고    scopus 로고
    • A detailed predictive model of the mammalian circadian clock
    • Forger D.B., Peskin C.S. A detailed predictive model of the mammalian circadian clock. Proc. Natl. Acad. Sci. 2003, 100(25):14806-14811.
    • (2003) Proc. Natl. Acad. Sci. , vol.100 , Issue.25 , pp. 14806-14811
    • Forger, D.B.1    Peskin, C.S.2
  • 24
    • 0037020198 scopus 로고    scopus 로고
    • The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo
    • Fu L., Pelicano H., Liu J., Huang P., Lee C. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 2002, 11:41-50.
    • (2002) Cell , vol.11 , pp. 41-50
    • Fu, L.1    Pelicano, H.2    Liu, J.3    Huang, P.4    Lee, C.5
  • 25
    • 84863643126 scopus 로고    scopus 로고
    • Entrainment of the mammalian cell cycle by the circadian clock. modeling two coupled cellular rhythms
    • Gérard C., Goldbeter A. Entrainment of the mammalian cell cycle by the circadian clock. modeling two coupled cellular rhythms. PLoS Comput. Biol. 2012, 8(5):e1002516.
    • (2012) PLoS Comput. Biol. , vol.8 , Issue.5 , pp. e1002516
    • Gérard, C.1    Goldbeter, A.2
  • 26
    • 33646084831 scopus 로고    scopus 로고
    • The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells
    • Gery S., Komatsu N., Baldjyan L., Yu A., Koo D., Koeffler H. The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol. Cell 2006, 22:375-382.
    • (2006) Mol. Cell , vol.22 , pp. 375-382
    • Gery, S.1    Komatsu, N.2    Baldjyan, L.3    Yu, A.4    Koo, D.5    Koeffler, H.6
  • 27
    • 80052281434 scopus 로고    scopus 로고
    • Modeling circadian clocks. from equations to oscillations
    • Gonze D. Modeling circadian clocks. from equations to oscillations. Cent. Eur. J. Biol. 2011, 6:699-711.
    • (2011) Cent. Eur. J. Biol. , vol.6 , pp. 699-711
    • Gonze, D.1
  • 29
    • 0006369934 scopus 로고
    • The application of circadian chronobiology to cancer chemotherapy.
    • Hrushesky, W., Bjarnason, G., 1993. The application of circadian chronobiology to cancer chemotherapy. Cancer 2666-2686.
    • (1993) Cancer , pp. 2666-2686
    • Hrushesky, W.1    Bjarnason, G.2
  • 30
    • 34247515224 scopus 로고    scopus 로고
    • Riding tandem. circadian clocks and the cell cycle
    • Hunt T., Sassone-Corsi P. Riding tandem. circadian clocks and the cell cycle. Cell 2007, 129:461-464.
    • (2007) Cell , vol.129 , pp. 461-464
    • Hunt, T.1    Sassone-Corsi, P.2
  • 31
    • 77958489353 scopus 로고    scopus 로고
    • Circadian clocks and cell division. What's the pacemaker?
    • Johnson C. Circadian clocks and cell division. What's the pacemaker?. Cell Cycle 2010, 9:3864-3873.
    • (2010) Cell Cycle , vol.9 , pp. 3864-3873
    • Johnson, C.1
  • 34
    • 0035966317 scopus 로고    scopus 로고
    • Posttranslational mechanisms regulate the mammalian circadian clock
    • Lee C., Etchegaray J., Cagampang F., Loudon A., Reppert S. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 2001, 107:855-867.
    • (2001) Cell , vol.107 , pp. 855-867
    • Lee, C.1    Etchegaray, J.2    Cagampang, F.3    Loudon, A.4    Reppert, S.5
  • 35
    • 4444301677 scopus 로고    scopus 로고
    • Modeling the mammalian circadian clock. sensitivity analysis and multiplicity of oscillatory mechanisms
    • Leloup J.-C., Goldbeter A. Modeling the mammalian circadian clock. sensitivity analysis and multiplicity of oscillatory mechanisms. J. Theor. Biol. 2004, 230:541-562.
    • (2004) J. Theor. Biol. , vol.230 , pp. 541-562
    • Leloup, J.-C.1    Goldbeter, A.2
  • 36
    • 0033643122 scopus 로고    scopus 로고
    • Therapeutic implications of circadian rhythms in cancer patients
    • Lévi F. Therapeutic implications of circadian rhythms in cancer patients. Novartis Found. Symp. 2000, 227:136-142.
    • (2000) Novartis Found. Symp. , vol.227 , pp. 136-142
    • Lévi, F.1
  • 37
    • 0141889955 scopus 로고    scopus 로고
    • Control mechanism of the circadian clock for timing of cell division in vivo
    • Matsuo T., Yamaguchi S., Mitsui S., Emi A., Shimoda F., Okamura H. Control mechanism of the circadian clock for timing of cell division in vivo. Science 2003, 302:255-259.
    • (2003) Science , vol.302 , pp. 255-259
    • Matsuo, T.1    Yamaguchi, S.2    Mitsui, S.3    Emi, A.4    Shimoda, F.5    Okamura, H.6
  • 38
    • 75549087930 scopus 로고    scopus 로고
    • Bionumbers
    • (BNID 100685)
    • Milo, et al. Bionumbers. Nucl. Acids Res. 2010, 38:D750-D753. (BNID 100685).
    • (2010) Nucl. Acids Res. , vol.38 , pp. D750-D753
    • Milo1
  • 39
    • 67651115789 scopus 로고    scopus 로고
    • A model of the cell-autonomous mammalian circadian clock
    • Mirsky H., Liu A., Welsh D., Kay S., Doyle F. A model of the cell-autonomous mammalian circadian clock. Proc. Natl. Acad. Sci. 2009, 106:11107-11112.
    • (2009) Proc. Natl. Acad. Sci. , vol.106 , pp. 11107-11112
    • Mirsky, H.1    Liu, A.2    Welsh, D.3    Kay, S.4    Doyle, F.5
  • 40
    • 0028931265 scopus 로고
    • Principles of cdk regulation
    • Morgan D. Principles of cdk regulation. Nature 1995, 374:131-134.
    • (1995) Nature , vol.374 , pp. 131-134
    • Morgan, D.1
  • 42
    • 8844256589 scopus 로고    scopus 로고
    • Circadian gene expression in individual fibroblasts. cell-autonomous and self-sustained oscillators pass time to daughter cells
    • Nagoshi E., Saini C., Bauer C., Laroche T., Naef F., et al. Circadian gene expression in individual fibroblasts. cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 2004, 119:693-705.
    • (2004) Cell , vol.119 , pp. 693-705
    • Nagoshi, E.1    Saini, C.2    Bauer, C.3    Laroche, T.4    Naef, F.5
  • 43
    • 0035579883 scopus 로고    scopus 로고
    • Mathematical model of the cell division cycle of fission yeast
    • Novak B., Pataki Z., Ciliberto A., Tyson J. Mathematical model of the cell division cycle of fission yeast. Chaos 2001, 11(1):277-286.
    • (2001) Chaos , vol.11 , Issue.1 , pp. 277-286
    • Novak, B.1    Pataki, Z.2    Ciliberto, A.3    Tyson, J.4
  • 44
    • 0037108057 scopus 로고    scopus 로고
    • Disruption of mCry 2 restores circadian rhythmicity in mPer 2 mutant mice
    • Oster H., Yasui A., van der Horst G., Albrecht U. Disruption of mCry 2 restores circadian rhythmicity in mPer 2 mutant mice. Genes Dev. 2002, 16:2633-2638.
    • (2002) Genes Dev. , vol.16 , pp. 2633-2638
    • Oster, H.1    Yasui, A.2    van der Horst, G.3    Albrecht, U.4
  • 45
    • 78349312462 scopus 로고    scopus 로고
    • Coupling cellular oscillators-circadian and cell division cycles in cyanobacteria
    • Pando B., van Oudenaarden A. Coupling cellular oscillators-circadian and cell division cycles in cyanobacteria. Curr. Opin. Genet. Dev. 2010, 20:613-618.
    • (2010) Curr. Opin. Genet. Dev. , vol.20 , pp. 613-618
    • Pando, B.1    van Oudenaarden, A.2
  • 46
    • 33745918016 scopus 로고    scopus 로고
    • Posttranslational regulation of mammalian circadian clock by chryptochrome and protein phosphatase 5
    • Partch C., Shields K., Thompson C., Selby C., Sancar A. Posttranslational regulation of mammalian circadian clock by chryptochrome and protein phosphatase 5. Proc. Acad. Sci. USA 2006, 103:10467-10472.
    • (2006) Proc. Acad. Sci. USA , vol.103 , pp. 10467-10472
    • Partch, C.1    Shields, K.2    Thompson, C.3    Selby, C.4    Sancar, A.5
  • 48
    • 0037194790 scopus 로고    scopus 로고
    • Coordination of circadian timing in mammals
    • Reppert S., Weaver D. Coordination of circadian timing in mammals. Nature 2002, 418:935-941.
    • (2002) Nature , vol.418 , pp. 935-941
    • Reppert, S.1    Weaver, D.2
  • 49
    • 33644625748 scopus 로고    scopus 로고
    • Feedback repression is required for mammalian circadian clock function
    • Sato T., Yamada R., Ukai H., Baggs J., Miraglia L., Kobayashi T., et al. Feedback repression is required for mammalian circadian clock function. Nat. Genet. 2006, 38:212-219.
    • (2006) Nat. Genet. , vol.38 , pp. 212-219
    • Sato, T.1    Yamada, R.2    Ukai, H.3    Baggs, J.4    Miraglia, L.5    Kobayashi, T.6
  • 50
    • 84869125804 scopus 로고    scopus 로고
    • Circadian rhythm disruption in cancer biology
    • Savvidis C., Koutsilieris M. Circadian rhythm disruption in cancer biology. Mol. Med. 2012, 18(1):1249-1260.
    • (2012) Mol. Med. , vol.18 , Issue.1 , pp. 1249-1260
    • Savvidis, C.1    Koutsilieris, M.2
  • 52
    • 27944487902 scopus 로고    scopus 로고
    • Logic of the yeast metabolic cycle. temporal compartmentalization of cellular processes
    • Tu B., Kudlicki A., Rowicka M., Mcknight S. Logic of the yeast metabolic cycle. temporal compartmentalization of cellular processes. Science 2005, 310:1152-1158.
    • (2005) Science , vol.310 , pp. 1152-1158
    • Tu, B.1    Kudlicki, A.2    Rowicka, M.3    Mcknight, S.4
  • 53
    • 77949826561 scopus 로고    scopus 로고
    • Circadian gating of the cell cycle revealed in single cyanobacterial cells
    • Yang C., Bernardo F., Dong G., Golden S., van Oudenaarden A. Circadian gating of the cell cycle revealed in single cyanobacterial cells. Science 2010, 327:1522-1526.
    • (2010) Science , vol.327 , pp. 1522-1526
    • Yang, C.1    Bernardo, F.2    Dong, G.3    Golden, S.4    van Oudenaarden, A.5
  • 54
    • 0036290425 scopus 로고    scopus 로고
    • Interacting feedback loops within the mammalian clock. BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2
    • Yu W., Nomura M., Ikeda M. Interacting feedback loops within the mammalian clock. BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2, and PER2. Biochem. Biophys. Res. Commun. 2002, 290(3):933-941.
    • (2002) Biochem. Biophys. Res. Commun. , vol.290 , Issue.3 , pp. 933-941
    • Yu, W.1    Nomura, M.2    Ikeda, M.3
  • 55
    • 36148997654 scopus 로고    scopus 로고
    • Computational analysis of mammalian cell division gated by a circadian clock. quantized cell cycles and cell size
    • Zamborszky J., Csikasz-Nagy A., Hong C. Computational analysis of mammalian cell division gated by a circadian clock. quantized cell cycles and cell size. J. Biol. Rhythms 2007, 22:542-553.
    • (2007) J. Biol. Rhythms , vol.22 , pp. 542-553
    • Zamborszky, J.1    Csikasz-Nagy, A.2    Hong, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.