-
1
-
-
44149120984
-
Molecular determinants of brown adipocyte formation and function
-
Farmer SR. 2008. Molecular determinants of brown adipocyte formation and function. Genes Dev. 22:1269-1275. http://dx.doi.org/10.1101/gad .1681308.
-
(2008)
Genes Dev.
, vol.22
, pp. 1269-1275
-
-
Farmer, S.R.1
-
2
-
-
63449111349
-
PRDM16: the interconvertible adipo-myocyte switch
-
Fruhbeck G, Sesma P, Burrell MA. 2009. PRDM16: the interconvertible adipo-myocyte switch. Trends Cell Biol. 19:141-146. http://dx.doi.org/10 .1016/j.tcb.2009.01.007.
-
(2009)
Trends Cell Biol.
, vol.19
, pp. 141-146
-
-
Fruhbeck, G.1
Sesma, P.2
Burrell, M.A.3
-
3
-
-
50049122271
-
PRDM16 controls a brown fat/skeletal muscle switch
-
Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM. 2008. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961-967. http://dx.doi.org/10.1038 /nature07182.
-
(2008)
Nature
, vol.454
, pp. 961-967
-
-
Seale, P.1
Bjork, B.2
Yang, W.3
Kajimura, S.4
Chin, S.5
Kuang, S.6
Scime, A.7
Devarakonda, S.8
Conroe, H.M.9
Erdjument-Bromage, H.10
Tempst, P.11
Rudnicki, M.A.12
Beier, D.R.13
Spiegelman, B.M.14
-
4
-
-
33244480814
-
Temporal recruitment of CCAAT/enhancer-binding proteins to early and late adipogenic promoters in vivo
-
Salma N, Xiao H, Imbalzano AN. 2006. Temporal recruitment of CCAAT/enhancer-binding proteins to early and late adipogenic promoters in vivo. J. Mol. Endocrinol. 36:139-151. http://dx.doi.org/10.1677 /jme.1.01918.
-
(2006)
J. Mol. Endocrinol.
, vol.36
, pp. 139-151
-
-
Salma, N.1
Xiao, H.2
Imbalzano, A.N.3
-
5
-
-
80054911514
-
Forming functional fat: a growing understanding of adipocyte differentiation
-
Cristancho AG, Lazar MA. 2011. Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell. Biol. 12: 722-734. http://dx.doi.org/10.1038/nrm3198.
-
(2011)
Nat. Rev. Mol. Cell. Biol.
, vol.12
, pp. 722-734
-
-
Cristancho, A.G.1
Lazar, M.A.2
-
6
-
-
33748942837
-
Transcriptional control of adipocyte formation
-
Farmer SR. 2006. Transcriptional control of adipocyte formation. Cell Metab. 4:263-273. http://dx.doi.org/10.1016/j.cmet.2006.07.001.
-
(2006)
Cell Metab.
, vol.4
, pp. 263-273
-
-
Farmer, S.R.1
-
7
-
-
84861841311
-
Epigenetic regulation of adipogenesis by histone methylation
-
Ge K. 2012. Epigenetic regulation of adipogenesis by histone methylation. Biochim. Biophys. Acta 1819:727-732. http://dx.doi.org/10.1016/j.bbagrm .2011.12.008.
-
(2012)
Biochim. Biophys. Acta
, vol.1819
, pp. 727-732
-
-
Ge, K.1
-
8
-
-
33845325476
-
Adipocyte differentiation from the inside out
-
Rosen ED, MacDougald OA. 2006. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell. Biol. 7:885-896. http://dx.doi.org/10.1038 /nrm2066.
-
(2006)
Nat. Rev. Mol. Cell. Biol.
, vol.7
, pp. 885-896
-
-
Rosen, E.D.1
MacDougald, O.A.2
-
9
-
-
84902085302
-
Transcriptional and epigenetic regulation of PPARγ expression during adipogenesis
-
Lee JE, Ge K. 2014. Transcriptional and epigenetic regulation of PPARγ expression during adipogenesis. Cell Biosci. 4:29. http://dx.doi.org/10 .1186/2045-3701-4-29.
-
(2014)
Cell Biosci.
, vol.4
, pp. 29
-
-
Lee, J.E.1
Ge, K.2
-
10
-
-
84891541640
-
H3K4 mono- and dimethyltransferase MLL4 is required for enhancer activation during cell differentiation
-
Lee JE, Wang C, Xu S, Cho YW, Wang L, Feng X, Baldridge A, Sartorelli V, Zhuang L, Peng W, Ge K. 2013. H3K4 mono- and dimethyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2:e01503. http://dx.doi.org/10.7554/eLife.01503.
-
(2013)
eLife
, vol.2
, pp. e01503
-
-
Lee, J.E.1
Wang, C.2
Xu, S.3
Cho, Y.W.4
Wang, L.5
Feng, X.6
Baldridge, A.7
Sartorelli, V.8
Zhuang, L.9
Peng, W.10
Ge, K.11
-
11
-
-
84872867103
-
Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis
-
Wang L, Xu S, Lee J-E, Baldridge A, Grullon S, Peng W, Ge K. 2013. Histone H3K9 methyltransferase G9a represses PPARγ expression and adipogenesis. EMBO J. 32:45-59. http://dx.doi.org/10.1038/emboj.2012 .306.
-
(2013)
EMBO J.
, vol.32
, pp. 45-59
-
-
Wang, L.1
Xu, S.2
Lee, J.-E.3
Baldridge, A.4
Grullon, S.5
Peng, W.6
Ge, K.7
-
12
-
-
77952331646
-
Propagation of adipogenic signals through an epigenomic transition state
-
Steger DJ, Grant GR, Schupp M, Tomaru T, Lefterova MI, Schug J, Manduchi E, Stoeckert CJ, Jr, Lazar MA. 2010. Propagation of adipogenic signals through an epigenomic transition state. Genes Dev. 24:1035-1044. http://dx.doi.org/10.1101/gad.1907110.
-
(2010)
Genes Dev.
, vol.24
, pp. 1035-1044
-
-
Steger, D.J.1
Grant, G.R.2
Schupp, M.3
Tomaru, T.4
Lefterova, M.I.5
Schug, J.6
Manduchi, E.7
Stoeckert Jr., C.J.8
Lazar, M.A.9
-
13
-
-
77957220857
-
Comparative epigenomic analysis of murine and human adipogenesis
-
Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES, Rosen ED. 2010. Comparative epigenomic analysis of murine and human adipogenesis. Cell 143:156-169. http://dx.doi.org/10.1016/j.cell.2010.09.006.
-
(2010)
Cell
, vol.143
, pp. 156-169
-
-
Mikkelsen, T.S.1
Xu, Z.2
Zhang, X.3
Wang, L.4
Gimble, J.M.5
Lander, E.S.6
Rosen, E.D.7
-
14
-
-
78751611793
-
Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation
-
Jin Q, Yu L-R, Wang L, Zhang Z, Kasper LH, Lee J-E, Wang C, Brindle PK, Dent SYR, Ge K. 2011. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J. 30:249-262. http://dx.doi.org/10.1038/emboj.2010 .318.
-
(2011)
EMBO J.
, vol.30
, pp. 249-262
-
-
Jin, Q.1
Yu, L.-R.2
Wang, L.3
Zhang, Z.4
Kasper, L.H.5
Lee, J.-E.6
Wang, C.7
Brindle, P.K.8
Dent, S.Y.R.9
Ge, K.10
-
15
-
-
0037053361
-
Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREB-binding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator- activated receptor gamma
-
Takahashi N, Kawada T, Yamamoto T, Goto T, Taimatsu A, Aoki N, Kawasaki H, Taira K, Yokoyama KK, Kamei Y, Fushiki T. 2002. Overexpression and ribozyme-mediated targeting of transcriptional coactivators CREB-binding protein and p300 revealed their indispensable roles in adipocyte differentiation through the regulation of peroxisome proliferator- activated receptor gamma. J. Biol. Chem. 277:16906-16912. http://dx .doi.org/10.1074/jbc.M200585200.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 16906-16912
-
-
Takahashi, N.1
Kawada, T.2
Yamamoto, T.3
Goto, T.4
Taimatsu, A.5
Aoki, N.6
Kawasaki, H.7
Taira, K.8
Yokoyama, K.K.9
Kamei, Y.10
Fushiki, T.11
-
16
-
-
0034912742
-
Histone acetyltransferases
-
Roth SY, Denu JM, Allis CD. 2001. Histone acetyltransferases. Annu. Rev. Biochem. 70:81-120. http://dx.doi.org/10.1146/annurev.biochem.70 .1.81.
-
(2001)
Annu. Rev. Biochem.
, vol.70
, pp. 81-120
-
-
Roth, S.Y.1
Denu, J.M.2
Allis, C.D.3
-
17
-
-
0035694469
-
Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases
-
Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD, Berger SL. 2001. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell 8:1243-1254. http://dx.doi.org/10.1016/S1097-2765(01)00414-2.
-
(2001)
Mol. Cell
, vol.8
, pp. 1243-1254
-
-
Barlev, N.A.1
Liu, L.2
Chehab, N.H.3
Mansfield, K.4
Harris, K.G.5
Halazonetis, T.D.6
Berger, S.L.7
-
18
-
-
0033970431
-
The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc
-
McMahon SB, Wood MA, Cole MD. 2000. The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol. 20:556-562. http://dx.doi.org/10.1128/MCB.20.2.556-562.2000.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 556-562
-
-
McMahon, S.B.1
Wood, M.A.2
Cole, M.D.3
-
19
-
-
0035979992
-
E2F transcriptional activation requires TRRAP and GCN5 cofactors
-
Lang SE, McMahon SB, Cole MD, Hearing P. 2001. E2F transcriptional activation requires TRRAP and GCN5 cofactors. J. Biol. Chem. 276: 32627-32634. http://dx.doi.org/10.1074/jbc.M102067200.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 32627-32634
-
-
Lang, S.E.1
McMahon, S.B.2
Cole, M.D.3
Hearing, P.4
-
20
-
-
79954992662
-
Extensive chromatin remodeling and establishment of transcription factor "hot spots" during early adipogenesis
-
Siersbaek R, Nielsen R, John S, Sung MH, Baek S, Loft A, Hager GL, Mandrup S. 2011. Extensive chromatin remodeling and establishment of transcription factor "hot spots" during early adipogenesis. EMBO J. 30: 1459-1472. http://dx.doi.org/10.1038/emboj.2011.65.
-
(2011)
EMBO J.
, vol.30
, pp. 1459-1472
-
-
Siersbaek, R.1
Nielsen, R.2
John, S.3
Sung, M.H.4
Baek, S.5
Loft, A.6
Hager, G.L.7
Mandrup, S.8
-
21
-
-
67649418447
-
Histone methylation regulator PTIP is required for PPARγ and C/EBPα expression and adipogenesis
-
Cho YW, Hong S, Jin Q, Wang L, Lee JE, Gavrilova O, Ge K. 2009. Histone methylation regulator PTIP is required for PPARγ and C/EBPα expression and adipogenesis. Cell Metab. 10:27-39. http://dx.doi.org/10 .1016/j.cmet.2009.05.010.
-
(2009)
Cell Metab.
, vol.10
, pp. 27-39
-
-
Cho, Y.W.1
Hong, S.2
Jin, Q.3
Wang, L.4
Lee, J.E.5
Gavrilova, O.6
Ge, K.7
-
22
-
-
0033623238
-
Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development
-
Xu W, Edmondson DG, Evrard YA, Wakamiya M, Behringer RR, Roth SY. 2000. Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development. Nat. Genet. 26:229-232. http://dx.doi .org/10.1038/79973.
-
(2000)
Nat. Genet.
, vol.26
, pp. 229-232
-
-
Xu, W.1
Edmondson, D.G.2
Evrard, Y.A.3
Wakamiya, M.4
Behringer, R.R.5
Roth, S.Y.6
-
23
-
-
68349133311
-
Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance
-
Atanassov BS, Evrard YA, Multani AS, Zhang Z, Tora L, Devys D, Chang S, Dent SY. 2009. Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance. Mol. Cell 35:352-364. http://dx.doi .org/10.1016/j.molcel.2009.06.015.
-
(2009)
Mol. Cell
, vol.35
, pp. 352-364
-
-
Atanassov, B.S.1
Evrard, Y.A.2
Multani, A.S.3
Zhang, Z.4
Tora, L.5
Devys, D.6
Chang, S.7
Dent, S.Y.8
-
24
-
-
64349114240
-
GCN5 is a required cofactor for a ubiquitin ligase that targets NF-κB/RelA
-
Mao X, Gluck N, Li D, Maine GN, Li H, Zaidi IW, Repaka A, Mayo MW, Burstein E. 2009. GCN5 is a required cofactor for a ubiquitin ligase that targets NF-κB/RelA. Genes Dev. 23:849-861. http://dx.doi.org/10 .1101/gad.1748409.
-
(2009)
Genes Dev.
, vol.23
, pp. 849-861
-
-
Mao, X.1
Gluck, N.2
Li, D.3
Maine, G.N.4
Li, H.5
Zaidi, I.W.6
Repaka, A.7
Mayo, M.W.8
Burstein, E.9
-
25
-
-
34347326271
-
Transcriptional control of brown fat determination by PRDM16
-
Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D, Spiegelman BM. 2007. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6:38-54. http://dx.doi.org/10 .1016/j.cmet.2007.06.001.
-
(2007)
Cell Metab.
, vol.6
, pp. 38-54
-
-
Seale, P.1
Kajimura, S.2
Yang, W.3
Chin, S.4
Rohas, L.M.5
Uldry, M.6
Tavernier, G.7
Langin, D.8
Spiegelman, B.M.9
-
26
-
-
84858039282
-
PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein
-
Ohno H, Shinoda K, Spiegelman BM, Kajimura S. 2012. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 15:395-404. http://dx.doi.org/10.1016/j.cmet.2012 .01.019.
-
(2012)
Cell Metab.
, vol.15
, pp. 395-404
-
-
Ohno, H.1
Shinoda, K.2
Spiegelman, B.M.3
Kajimura, S.4
-
27
-
-
84892702771
-
Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch
-
Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, Lo JC, Zeng X, Ye L, Khandekar MJ, Wu J, Gunawardana SC, Banks AS, Camporez JP, Jurczak MJ, Kajimura S, Piston DW, Mathis D, Cinti S, Shulman GI, Seale P, Spiegelman BM. 2014. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156:304-316. http://dx.doi.org/10.1016/j.cell.2013.12.021.
-
(2014)
Cell
, vol.156
, pp. 304-316
-
-
Cohen, P.1
Levy, J.D.2
Zhang, Y.3
Frontini, A.4
Kolodin, D.P.5
Svensson, K.J.6
Lo, J.C.7
Zeng, X.8
Ye, L.9
Khandekar, M.J.10
Wu, J.11
Gunawardana, S.C.12
Banks, A.S.13
Camporez, J.P.14
Jurczak, M.J.15
Kajimura, S.16
Piston, D.W.17
Mathis, D.18
Cinti, S.19
Shulman, G.I.20
Seale, P.21
Spiegelman, B.M.22
more..
-
28
-
-
69449102464
-
Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes
-
Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K. 2009. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138:1019-1031. http://dx.doi.org/10.1016 /j.cell.2009.06.049.
-
(2009)
Cell
, vol.138
, pp. 1019-1031
-
-
Wang, Z.1
Zang, C.2
Cui, K.3
Schones, D.E.4
Barski, A.5
Peng, W.6
Zhao, K.7
-
29
-
-
46249112085
-
Combinatorial patterns of histone acetylations and methylations in the human genome
-
Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K. 2008. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40:897-903. http://dx.doi.org/10.1038/ng.154.
-
(2008)
Nat. Genet.
, vol.40
, pp. 897-903
-
-
Wang, Z.1
Zang, C.2
Rosenfeld, J.A.3
Schones, D.E.4
Barski, A.5
Cuddapah, S.6
Cui, K.7
Roh, T.Y.8
Peng, W.9
Zhang, M.Q.10
Zhao, K.11
-
30
-
-
84856237597
-
Polycomb protein Ezh1 promotes RNA polymerase II elongation
-
Mousavi K, Zare H, Wang AH, Sartorelli V. 2012. Polycomb protein Ezh1 promotes RNA polymerase II elongation. Mol. Cell 45:255-262. http://dx.doi.org/10.1016/j.molcel.2011.11.019.
-
(2012)
Mol. Cell
, vol.45
, pp. 255-262
-
-
Mousavi, K.1
Zare, H.2
Wang, A.H.3
Sartorelli, V.4
-
31
-
-
0025941621
-
cAMP stimulates the C/EBP-related transcription factor rNFIL-6 to trans-locate to the nucleus and induce c-fos transcription
-
Metz R, Ziff E. 1991. cAMP stimulates the C/EBP-related transcription factor rNFIL-6 to trans-locate to the nucleus and induce c-fos transcription. Genes Dev. 5:1754-1766. http://dx.doi.org/10.1101/gad.5.10.1754.
-
(1991)
Genes Dev.
, vol.5
, pp. 1754-1766
-
-
Metz, R.1
Ziff, E.2
-
32
-
-
22244479353
-
Sequential phosphorylation of CCAAT enhancer-binding protein beta by MAPK and glycogen synthase kinase 3beta is required for adipogenesis
-
Tang QQ, Gronborg M, Huang H, Kim JW, Otto TC, Pandey A, Lane MD. 2005. Sequential phosphorylation of CCAAT enhancer-binding protein beta by MAPK and glycogen synthase kinase 3beta is required for adipogenesis. Proc. Natl. Acad. Sci. U. S. A. 102:9766-9771. http://dx.doi .org/10.1073/pnas.0503891102.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 9766-9771
-
-
Tang, Q.Q.1
Gronborg, M.2
Huang, H.3
Kim, J.W.4
Otto, T.C.5
Pandey, A.6
Lane, M.D.7
-
33
-
-
69949172827
-
HAT-HDAC interplay modulates global histone H3K14 acetylation in gene-coding regions during stress
-
Johnsson A, Durand-Dubief M, Xue-Franzen Y, Ronnerblad M, Ekwall K, Wright A. 2009. HAT-HDAC interplay modulates global histone H3K14 acetylation in gene-coding regions during stress. EMBO Rep. 10: 1009-1014. http://dx.doi.org/10.1038/embor.2009.127.
-
(2009)
EMBO Rep.
, vol.10
, pp. 1009-1014
-
-
Johnsson, A.1
Durand-Dubief, M.2
Xue-Franzen, Y.3
Ronnerblad, M.4
Ekwall, K.5
Wright, A.6
-
34
-
-
33845968873
-
Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions
-
Govind CK, Zhang F, Qiu H, Hofmeyer K, Hinnebusch AG. 2007. Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions. Mol. Cell 25:31-42. http://dx.doi.org/10.1016/j .molcel.2006.11.020.
-
(2007)
Mol. Cell
, vol.25
, pp. 31-42
-
-
Govind, C.K.1
Zhang, F.2
Qiu, H.3
Hofmeyer, K.4
Hinnebusch, A.G.5
-
35
-
-
9144274420
-
Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo
-
Kristjuhan A, Svejstrup JQ. 2004. Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo. EMBO J. 23:4243-4252. http://dx.doi.org/10.1038/sj.emboj.7600433.
-
(2004)
EMBO J.
, vol.23
, pp. 4243-4252
-
-
Kristjuhan, A.1
Svejstrup, J.Q.2
-
36
-
-
41149145576
-
Acetylation of conserved lysines in the catalytic core of cyclin-dependent kinase 9 inhibits kinase activity and regulates transcription
-
Sabo A, Lusic M, Cereseto A, Giacca M. 2008. Acetylation of conserved lysines in the catalytic core of cyclin-dependent kinase 9 inhibits kinase activity and regulates transcription. Mol. Cell. Biol. 28:2201-2212. http: //dx.doi.org/10.1128/MCB.01557-07.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 2201-2212
-
-
Sabo, A.1
Lusic, M.2
Cereseto, A.3
Giacca, M.4
-
37
-
-
84870595878
-
MyomiR-133 regulates brown fat differentiation through Prdm16
-
Trajkovski M, Ahmed K, Esau CC, Stoffel M. 2012. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat. Cell Biol. 14:1330-1335. http://dx.doi.org/10.1038/ncb2612.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1330-1335
-
-
Trajkovski, M.1
Ahmed, K.2
Esau, C.C.3
Stoffel, M.4
-
38
-
-
77950245008
-
Transcriptional control of brown fat development
-
Kajimura S, Seale P, Spiegelman BM. 2010. Transcriptional control of brown fat development. Cell Metab. 11:257-262. http://dx.doi.org/10 .1016/j.cmet.2010.03.005.
-
(2010)
Cell Metab.
, vol.11
, pp. 257-262
-
-
Kajimura, S.1
Seale, P.2
Spiegelman, B.M.3
-
39
-
-
33744534726
-
GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α
-
Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P. 2006. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metab. 3:429-438. http://dx.doi.org/10.1016/j.cmet.2006.04.013.
-
(2006)
Cell Metab.
, vol.3
, pp. 429-438
-
-
Lerin, C.1
Rodgers, J.T.2
Kalume, D.E.3
Kim, S.H.4
Pandey, A.5
Puigserver, P.6
-
40
-
-
33847284069
-
Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation of C/EBPβ by GCN5
-
Wiper-Bergeron N, Salem HA, Tomlinson JJ, Wu D, Hache RJ. 2007. Glucocorticoid-stimulated preadipocyte differentiation is mediated through acetylation of C/EBPβ by GCN5. Proc. Natl. Acad. Sci. U. S. A. 104:2703-2708. http://dx.doi.org/10.1073/pnas.0607378104.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 2703-2708
-
-
Wiper-Bergeron, N.1
Salem, H.A.2
Tomlinson, J.J.3
Wu, D.4
Hache, R.J.5
|