메뉴 건너뛰기




Volumn 145, Issue , 2014, Pages 263-268

Fault detection based on a robust one class support vector machine

Author keywords

Fault detection; One class support vector machines; Outliers; Support vector machines

Indexed keywords

FAULT DETECTION; STATISTICS;

EID: 84906939980     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.05.035     Document Type: Article
Times cited : (159)

References (21)
  • 1
    • 84890856765 scopus 로고    scopus 로고
    • ∞ fault estimation for uncertain linear discrete time-varying systems with known inputs
    • 60-II
    • ∞ fault estimation for uncertain linear discrete time-varying systems with known inputs. IEEE Trans. Circuits Syst. 2013, 60-II(1):902-906.
    • (2013) IEEE Trans. Circuits Syst. , Issue.1 , pp. 902-906
    • Shen, B.1    Ding, S.X.2    Wang, Z.3
  • 2
    • 84871973071 scopus 로고    scopus 로고
    • An integrated design framework of fault-tolerant wireless networked control systems for industrial automatic control applications
    • Ding S.X., Zhang P., Yin S., Ding E.L. An integrated design framework of fault-tolerant wireless networked control systems for industrial automatic control applications. IEEE Trans. Ind. Inform. 2013, 9(1):462-471.
    • (2013) IEEE Trans. Ind. Inform. , vol.9 , Issue.1 , pp. 462-471
    • Ding, S.X.1    Zhang, P.2    Yin, S.3    Ding, E.L.4
  • 3
    • 84871307738 scopus 로고    scopus 로고
    • ∞ fault estimation for linear discrete time-varying systems with delayed measurements
    • ∞ fault estimation for linear discrete time-varying systems with delayed measurements. Automatica 2013, 49(1):293-296.
    • (2013) Automatica , vol.49 , Issue.1 , pp. 293-296
    • Shen, B.1    Ding, S.X.2    Wang, Z.3
  • 4
    • 84881646785 scopus 로고    scopus 로고
    • Asymptotic stability and stabilisation of uncertain delta operator systems with time-varying delays
    • Xie X., Yin S., Gao H., Kaynak O. Asymptotic stability and stabilisation of uncertain delta operator systems with time-varying delays. IET Control Theory Appl. 2013, 7(8):1071-1078.
    • (2013) IET Control Theory Appl. , vol.7 , Issue.8 , pp. 1071-1078
    • Xie, X.1    Yin, S.2    Gao, H.3    Kaynak, O.4
  • 5
    • 84866069902 scopus 로고    scopus 로고
    • A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
    • Yin S., Ding S.X., Haghani A., Hao H., Zhang P. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. J. Process Control 2012, 22(9):1567-1581.
    • (2012) J. Process Control , vol.22 , Issue.9 , pp. 1567-1581
    • Yin, S.1    Ding, S.X.2    Haghani, A.3    Hao, H.4    Zhang, P.5
  • 7
    • 84866132201 scopus 로고    scopus 로고
    • Data-driven monitoring for stochastic systems and its application on batch process
    • Yin S., Ding S.X., Abandan Sari A.H., Hao H. Data-driven monitoring for stochastic systems and its application on batch process. Int. J. Syst. Sci. 2012, 44(7):1366-1376.
    • (2012) Int. J. Syst. Sci. , vol.44 , Issue.7 , pp. 1366-1376
    • Yin, S.1    Ding, S.X.2    Abandan Sari, A.H.3    Hao, H.4
  • 8
    • 77955513371 scopus 로고    scopus 로고
    • Recursive identification algorithms to design fault detection systems
    • Naik A.S., Yin S., Ding S.X., Zhang P. Recursive identification algorithms to design fault detection systems. J. Process Control 2010, 20(8):957-965.
    • (2010) J. Process Control , vol.20 , Issue.8 , pp. 957-965
    • Naik, A.S.1    Yin, S.2    Ding, S.X.3    Zhang, P.4
  • 9
    • 84886674516 scopus 로고    scopus 로고
    • A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill
    • Ding S., Yin S., Peng K., Hao H., Shen B. A novel scheme for key performance indicator prediction and diagnosis with application to an industrial hot strip mill. IEEE Trans. Ind. Inform. 2012, 9(4):2239-2247.
    • (2012) IEEE Trans. Ind. Inform. , vol.9 , Issue.4 , pp. 2239-2247
    • Ding, S.1    Yin, S.2    Peng, K.3    Hao, H.4    Shen, B.5
  • 10
    • 79956155898 scopus 로고    scopus 로고
    • Bearing fault detection of induction motor using wavelet and support vector machines (SVMs)
    • Konar P., Chattopadhyay P. Bearing fault detection of induction motor using wavelet and support vector machines (SVMs). Appl. Soft Comput. 2011, 11(6):4203-4211.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.6 , pp. 4203-4211
    • Konar, P.1    Chattopadhyay, P.2
  • 11
    • 84855783889 scopus 로고    scopus 로고
    • A Support Vector Machine approach based on physical model training for rolling element bearing fault detection in industrial environments
    • Gryllias K.C., Antoniadis I.A. A Support Vector Machine approach based on physical model training for rolling element bearing fault detection in industrial environments. Eng. Appl. Artif. Intell. 2012, 25(2):326-344.
    • (2012) Eng. Appl. Artif. Intell. , vol.25 , Issue.2 , pp. 326-344
    • Gryllias, K.C.1    Antoniadis, I.A.2
  • 12
    • 78649492287 scopus 로고    scopus 로고
    • Using SVM based method for equipment fault detection in a thermal power plant
    • Chen K.-Y., Chen L.-S., Chen M.-C., Lee C.-L. Using SVM based method for equipment fault detection in a thermal power plant. Comput. Ind. 2011, 62(1):42-50.
    • (2011) Comput. Ind. , vol.62 , Issue.1 , pp. 42-50
    • Chen, K.-Y.1    Chen, L.-S.2    Chen, M.-C.3    Lee, C.-L.4
  • 14
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with gaussian kernel
    • Keerthi S.S., Lin C.-J. Asymptotic behaviors of support vector machines with gaussian kernel. Neural comput. 2003, 15(7):1667-1689.
    • (2003) Neural comput. , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2
  • 16
    • 77955988833 scopus 로고    scopus 로고
    • Total bregman divergence and its applications to shape retrieval
    • IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE
    • M. Liu, B.C. Vemuri, S.-I. Amari, F. Nielsen, Total bregman divergence and its applications to shape retrieval, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2010, pp. 3463-3468.
    • (2010) , pp. 3463-3468
    • Liu, M.1    Vemuri, B.C.2    Amari, S.-I.3    Nielsen, F.4
  • 17
    • 84881649533 scopus 로고    scopus 로고
    • A modified partial robust M-regression to improve prediction performance for data with outliers
    • IEEE International Symposium on Industrial Electronics (ISIE), IEEE
    • S. Yin, G. Wang, A modified partial robust M-regression to improve prediction performance for data with outliers, in: IEEE International Symposium on Industrial Electronics (ISIE), IEEE, 2013, pp. 1-6.
    • (2013) , pp. 1-6
    • Yin, S.1    Wang, G.2
  • 18
    • 72149111135 scopus 로고    scopus 로고
    • Fault detection and diagnosis in process data using one-class support vector machines
    • Mahadevan S., Shah S.L. Fault detection and diagnosis in process data using one-class support vector machines. J. Process Control 2009, 19(10):1627-1639.
    • (2009) J. Process Control , vol.19 , Issue.10 , pp. 1627-1639
    • Mahadevan, S.1    Shah, S.L.2
  • 19
    • 84893858733 scopus 로고    scopus 로고
    • Quality evaluation based on multivariate statistical methods
    • 2013
    • S. Yin, X. Zhu, H. R. Karimi, Quality evaluation based on multivariate statistical methods, Math. Probl. Eng., 2013, 2013.
    • (2013) Math. Probl. Eng.
    • Yin, S.1    Zhu, X.2    Karimi, H.R.3
  • 20
    • 74249108882 scopus 로고    scopus 로고
    • Efficient recursive principal component analysis algorithms for process monitoring
    • Elshenawy L.M., Yin S., Naik A.S., Ding S.X. Efficient recursive principal component analysis algorithms for process monitoring. Ind. Eng. Chem. Res. 2009, 49(1):252-259.
    • (2009) Ind. Eng. Chem. Res. , vol.49 , Issue.1 , pp. 252-259
    • Elshenawy, L.M.1    Yin, S.2    Naik, A.S.3    Ding, S.X.4
  • 21
    • 77957599856 scopus 로고    scopus 로고
    • Total projection to latent structures for process monitoring
    • Zhou D., Li G., Qin S.J. Total projection to latent structures for process monitoring. AIChE J. 2010, 56(1):168-178.
    • (2010) AIChE J. , vol.56 , Issue.1 , pp. 168-178
    • Zhou, D.1    Li, G.2    Qin, S.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.