메뉴 건너뛰기




Volumn 1, Issue , 2014, Pages 457-467

Ambiguity-aware ensemble training for semi-supervised dependency parsing

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; FORESTRY; SUPERVISED LEARNING;

EID: 84906929135     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/v1/p14-1043     Document Type: Conference Paper
Times cited : (37)

References (44)
  • 1
    • 80053268998 scopus 로고    scopus 로고
    • Web-scale features for full-scale parsing
    • Mohit Bansal and Dan Klein. 2011. Web-scale features for full-scale parsing. In Proceedings of ACL, pages 693-702.
    • (2011) Proceedings of ACL , pp. 693-702
    • Bansal, M.1    Klein, D.2
  • 3
    • 84876789704 scopus 로고    scopus 로고
    • A transitionbased system for joint part-of-speech tagging and labeled non-projective dependency parsing
    • Bernd Bohnet and Joakim Nivre. 2012. A transitionbased system for joint part-of-speech tagging and labeled non-projective dependency parsing. In Proceedings of EMNLP 2012, pages 1455-1465.
    • (2012) Proceedings of EMNLP 2012 , pp. 1455-1465
    • Bohnet, B.1    Nivre, J.2
  • 4
    • 80053398448 scopus 로고    scopus 로고
    • Top accuracy and fast dependency parsing is not a contradiction
    • Bernd Bohnet. 2010. Top accuracy and fast dependency parsing is not a contradiction. In Proceedings of COLING, pages 89-97.
    • (2010) Proceedings of COLING , pp. 89-97
    • Bohnet, B.1
  • 5
    • 80053358560 scopus 로고    scopus 로고
    • Experiments with a higherorder projective dependency parser
    • Xavier Carreras. 2007. Experiments with a higherorder projective dependency parser. In Proceedings of EMNLP/CoNLL, pages 141-150.
    • (2007) Proceedings of EMNLP/CoNLL , pp. 141-150
    • Carreras, X.1
  • 6
    • 84859885240 scopus 로고    scopus 로고
    • Coarseto- fine n-best parsing and maxent discriminative reranking
    • Eugene Charniak and Mark Johnson. 2005. Coarseto- fine n-best parsing and maxent discriminative reranking. In Proceedings of ACL, pages 173-180.
    • (2005) Proceedings of ACL , pp. 173-180
    • Charniak, E.1    Johnson, M.2
  • 8
    • 79952809567 scopus 로고    scopus 로고
    • Improving dependency parsing with subtrees from auto-parsed data
    • Wenliang Chen, Jun'ichi Kazama, Kiyotaka Uchimoto, and Kentaro Torisawa. 2009. Improving dependency parsing with subtrees from auto-parsed data. In Proceedings of EMNLP, pages 570-579.
    • (2009) Proceedings of EMNLP , pp. 570-579
    • Chen, W.1    Kazama, J.2    Uchimoto, K.3    Torisawa, K.4
  • 9
    • 84906926328 scopus 로고    scopus 로고
    • Semi-supervised feature transformation for dependency parsing
    • Wenliang Chen, Min Zhang, and Yue Zhang. 2013. Semi-supervised feature transformation for dependency parsing. In Proceedings of EMNLP, pages 1303-1313.
    • (2013) Proceedings of EMNLP , pp. 1303-1313
    • Chen, W.1    Zhang, M.2    Zhang, Y.3
  • 10
    • 33646407289 scopus 로고    scopus 로고
    • Discriminative reranking for natural language parsing
    • Michael J. Collins and Terry Koo. 2005. Discriminative reranking for natural language parsing. Computational Linguistics, pages 25-70.
    • (2005) Computational Linguistics , pp. 25-70
    • Collins, M.J.1    Koo, T.2
  • 12
    • 38049121197 scopus 로고    scopus 로고
    • Probabilistic models for action-based chinese dependency parsing
    • Xiangyu Duan, Jun Zhao, and Bo Xu. 2007. Probabilistic models for action-based Chinese dependency parsing. In Proceedings of ECML/ECPPKDD, pages 559-566.
    • (2007) Proceedings of ECML/ECPPKDD , pp. 559-566
    • Duan, X.1    Zhao, J.2    Xu, B.3
  • 13
    • 72449211489 scopus 로고    scopus 로고
    • Efficient, feature-based, conditional random field parsing
    • Jenny Rose Finkel, Alex Kleeman, and Christopher D. Manning. 2008. Efficient, feature-based, conditional random field parsing. In Proceedings of ACL, pages 959-967.
    • (2008) Proceedings of ACL , pp. 959-967
    • Rose Finkel, J.1    Kleeman, A.2    Manning, C.D.3
  • 14
    • 84858415500 scopus 로고    scopus 로고
    • An efficient algorithm for easy-first non-directional dependency parsing
    • Yoav Goldberg and Michael Elhadad. 2010. An efficient algorithm for easy-first non-directional dependency parsing. In Proceedings of NAACL.
    • (2010) Proceedings of NAACL
    • Goldberg, Y.1    Elhadad, M.2
  • 15
    • 80053389291 scopus 로고    scopus 로고
    • Selftraining pcfg grammars with latent annotations across languages
    • Zhongqiang Huang and Mary Harper. 2009. Selftraining PCFG grammars with latent annotations across languages. In Proceedings of EMNLP 2009, pages 832-841.
    • (2009) Proceedings of EMNLP 2009 , pp. 832-841
    • Huang, Z.1    Harper, M.2
  • 18
    • 84859952372 scopus 로고    scopus 로고
    • Efficient thirdorder dependency parsers
    • Terry Koo and Michael Collins. 2010. Efficient thirdorder dependency parsers. In ACL, pages 1-11.
    • (2010) ACL , pp. 1-11
    • Koo, T.1    Collins, M.2
  • 19
    • 80053551637 scopus 로고    scopus 로고
    • Simple semi-supervised dependency parsing
    • Terry Koo, Xavier Carreras, and Michael Collins. 2008. Simple semi-supervised dependency parsing. In Proceedings of ACL, pages 595-603.
    • (2008) Proceedings of ACL , pp. 595-603
    • Koo, T.1    Carreras, X.2    Collins, M.3
  • 20
    • 84876784281 scopus 로고    scopus 로고
    • A separately passive-aggressive training algorithm for joint pos tagging and dependency parsing
    • Zhenghua Li, Min Zhang, Wanxiang Che, and Ting Liu. 2012. A separately passive-aggressive training algorithm for joint POS tagging and dependency parsing. In COLING 2012, pages 1681-1698.
    • (2012) COLING 2012 , pp. 1681-1698
    • Li, Z.1    Zhang, M.2    Che, W.3    Liu, T.4
  • 22
    • 84876798255 scopus 로고    scopus 로고
    • Online learning of approximate dependency parsing algorithms
    • Ryan McDonald and Fernando Pereira. 2006. Online learning of approximate dependency parsing algorithms. In Proceedings of EACL, pages 81-88.
    • (2006) Proceedings of EACL , pp. 81-88
    • McDonald, R.1    Pereira, F.2
  • 23
    • 84859925125 scopus 로고    scopus 로고
    • Online large-margin training of dependency parsers
    • Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005. Online large-margin training of dependency parsers. In Proceedings of ACL, pages 91-98.
    • (2005) Proceedings of ACL , pp. 91-98
    • McDonald, R.1    Crammer, K.2    Pereira, F.3
  • 24
    • 80053375807 scopus 로고    scopus 로고
    • Integrating graph-based and transition-based dependency parsers
    • Joakim Nivre and Ryan McDonald. 2008. Integrating graph-based and transition-based dependency parsers. In Proceedings of ACL, pages 950-958.
    • (2008) Proceedings of ACL , pp. 950-958
    • Nivre, J.1    McDonald, R.2
  • 25
    • 33746230843 scopus 로고    scopus 로고
    • An efficient algorithm for projective dependency parsing
    • Joakim Nivre. 2003. An efficient algorithm for projective dependency parsing. In Proceedings of IWPT, pages 149-160.
    • (2003) Proceedings of IWPT , pp. 149-160
    • Nivre, J.1
  • 27
    • 84858380058 scopus 로고    scopus 로고
    • Improved inference for unlexicalized parsing
    • Slav Petrov and Dan Klein. 2007. Improved inference for unlexicalized parsing. In Proceedings of NAACL.
    • (2007) Proceedings of NAACL
    • Petrov, S.1    Klein, D.2
  • 28
    • 85119974562 scopus 로고    scopus 로고
    • Parser combination by reparsing
    • Kenji Sagae and Alon Lavie. 2006. Parser combination by reparsing. In Proceedings of NAACL, pages 129-132.
    • (2006) Proceedings of NAACL , pp. 129-132
    • Sagae, K.1    Lavie, A.2
  • 30
    • 80053357918 scopus 로고    scopus 로고
    • Bootstrapping feature-rich dependency parsers with entropic priors
    • David A. Smith and Jason Eisner. 2007. Bootstrapping feature-rich dependency parsers with entropic priors. In Proceedings of EMNLP, pages 667-677.
    • (2007) Proceedings of EMNLP , pp. 667-677
    • Smith, D.A.1    Eisner, J.2
  • 31
    • 80053400050 scopus 로고    scopus 로고
    • Semisupervised dependency parsing using generalized tri-training
    • Anders Søgaard and Christian Rishøj. 2010. Semisupervised dependency parsing using generalized tri-training. In Proceedings of ACL, pages 1065-1073.
    • (2010) Proceedings of ACL , pp. 1065-1073
    • Søgaard, A.1    Rishøj, C.2
  • 32
    • 80053413810 scopus 로고    scopus 로고
    • Datadriven dependency parsing of new languages using incomplete and noisy training data
    • Kathrin Spreyer and Jonas Kuhn. 2009. Datadriven dependency parsing of new languages using incomplete and noisy training data. In CoNLL, pages 12-20.
    • (2009) CoNLL , pp. 12-20
    • Spreyer, K.1    Kuhn, J.2
  • 33
    • 84858390758 scopus 로고    scopus 로고
    • Ensemble models for dependency parsing: Cheap and good?
    • Mihai Surdeanu and Christopher D. Manning. 2010. Ensemble models for dependency parsing: Cheap and good? In Proceedings of NAACL, pages 649-652.
    • (2010) Proceedings of NAACL , pp. 649-652
    • Surdeanu, M.1    Manning, C.D.2
  • 34
    • 80053399428 scopus 로고    scopus 로고
    • An empirical study of semi-supervised structured conditional models for dependency parsing
    • Jun Suzuki, Hideki Isozaki, Xavier Carreras, and Michael Collins. 2009. An empirical study of semi-supervised structured conditional models for dependency parsing. In Proceedings of EMNLP, pages 551-560.
    • (2009) Proceedings of EMNLP , pp. 551-560
    • Suzuki, J.1    Isozaki, H.2    Carreras, X.3    Collins, M.4
  • 35
    • 84906924172 scopus 로고    scopus 로고
    • Target language adaptation of discriminative transfer parsers
    • Oscar Täckström, Ryan McDonald, and Joakim Nivre. 2013. Target language adaptation of discriminative transfer parsers. In Proceedings of NAACL, pages 1061-1071.
    • (2013) Proceedings of NAACL , pp. 1061-1071
    • Täckström, O.1    McDonald, R.2    Nivre, J.3
  • 37
    • 80053376246 scopus 로고    scopus 로고
    • Semi-supervised convex training for dependency parsing
    • Qin Iris Wang, Dale Schuurmans, and Dekang Lin. 2008. Semi-supervised convex training for dependency parsing. In Proceedings of ACL, pages 532-540.
    • (2008) Proceedings of ACL , pp. 532-540
    • Iris Wang, Q.1    Schuurmans, D.2    Lin, D.3
  • 38
    • 26044449174 scopus 로고    scopus 로고
    • Statistical dependency analysis with support vector machines
    • Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical dependency analysis with support vector machines. In Proceedings of IWPT, pages 195-206.
    • (2003) Proceedings of IWPT , pp. 195-206
    • Yamada, H.1    Matsumoto, Y.2
  • 39
    • 85141919230 scopus 로고
    • Unsupervised word sense disambiguation rivaling supervised methods
    • David Yarowsky. 1995. Unsupervised word sense disambiguation rivaling supervised methods. In Proceedings of ACL, pages 189-196.
    • (1995) Proceedings of ACL , pp. 189-196
    • Yarowsky, D.1
  • 40
    • 84883358952 scopus 로고    scopus 로고
    • Generalized higher-order dependency parsing with cube pruning
    • Hao Zhang and Ryan McDonald. 2012. Generalized higher-order dependency parsing with cube pruning. In Proceedings of EMNLP-CoNLL, pages 320-331.
    • (2012) Proceedings of EMNLP-CoNLL , pp. 320-331
    • Zhang, H.1    McDonald, R.2
  • 41
    • 84859018340 scopus 로고    scopus 로고
    • Transition-based dependency parsing with rich non-local features
    • Yue Zhang and Joakim Nivre. 2011. Transition-based dependency parsing with rich non-local features. In Proceedings of ACL, pages 188-193.
    • (2011) Proceedings of ACL , pp. 188-193
    • Zhang, Y.1    Nivre, J.2
  • 42
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifiers. in
    • Zhi-Hua Zhou and Ming Li. 2005. Tri-training: Exploiting unlabeled data using three classifiers. In IEEE Transactions on Knowledge and Data Engineering, pages 1529-1541.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , pp. 1529-1541
    • Zhou, Z.1    Li, M.2
  • 43
    • 84859084748 scopus 로고    scopus 로고
    • Exploiting web-derived selectional preference to improve statistical dependency parsing
    • Guangyou Zhou, Jun Zhao, Kang Liu, and Li Cai. 2011. Exploiting web-derived selectional preference to improve statistical dependency parsing. In Proceedings of ACL, pages 1556-1565.
    • (2011) Proceedings of ACL , pp. 1556-1565
    • Zhou, G.1    Zhao, J.2    Liu, K.3    Cai, L.4
  • 44
    • 70349327709 scopus 로고    scopus 로고
    • When semi-supervised learning meets ensemble learning
    • Zhi-Hua Zhou. 2009. When semi-supervised learning meets ensemble learning. In MCS.
    • (2009) MCS
    • Zhou, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.