메뉴 건너뛰기




Volumn , Issue , 2009, Pages 551-560

An empirical study of semi-supervised structured conditional models for dependency parsing

Author keywords

[No Author keywords available]

Indexed keywords

FORESTRY; LEARNING ALGORITHMS; MACHINE LEARNING; SUPERVISED LEARNING;

EID: 80053399428     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3115/1699571.1699585     Document Type: Conference Paper
Times cited : (69)

References (26)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A Framework for learning predictive structures from multiple tasks and unlabeled data
    • R. Kubota Ando and T. Zhang. 2005. A Framework for Learning Predictive Structures from Multiple Tasks and Unlabeled Data. Journal of Machine Learning Research, 6:1817-1853.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 2
    • 0002703873 scopus 로고
    • Speech Communication Papers for the 97th Meeting of the Acoustical Society of America
    • J. K. Baker. 1979. Trainable Grammars for Speech Recognition. In Speech Communication Papers for the 97th Meeting of the Acoustical Society of America, pages 547-550.
    • (1979) Trainable Grammars for Speech Recognition , pp. 547-550
    • Baker, J.K.1
  • 3
    • 80053342456 scopus 로고    scopus 로고
    • Domain adaptation with structural correspondence learning
    • J. Blitzer, R. McDonald, and F. Pereira. 2006. Domain Adaptation with Structural Correspondence Learning. In Proc. of EMNLP-2006, pages 120-128.
    • (2006) Proc. of EMNLP-2006 , pp. 120-128
    • Blitzer, J.1    McDonald, R.2    Pereira, F.3
  • 5
    • 85086490822 scopus 로고    scopus 로고
    • CoNLL-X shared task on multilingual dependency parsing
    • S. Buchholz and E. Marsi. 2006. CoNLL-X Shared Task on Multilingual Dependency Parsing. In Proc. of CoNLL-X, pages 149-164.
    • (2006) Proc. of CoNLL-X , pp. 149-164
    • Buchholz, S.1    Marsi, E.2
  • 6
    • 80053358560 scopus 로고    scopus 로고
    • Experiments with a higher-order projective dependency parser
    • X. Carreras. 2007. Experiments with a Higher-Order Projective Dependency Parser. In Proc. of EMNLP-CoNLL, pages 957-961.
    • (2007) Proc. of EMNLP-CoNLL , pp. 957-961
    • Carreras, X.1
  • 8
    • 4043070633 scopus 로고    scopus 로고
    • Three new probabilistic models for dependency parsing: An exploration
    • J. Eisner. 1996. Three New Probabilistic Models for Dependency Parsing: An Exploration. In Proc. of COLING-96, pages 340-345.
    • (1996) Proc. of COLING-96 , pp. 340-345
    • Eisner, J.1
  • 9
    • 20444420608 scopus 로고    scopus 로고
    • Building a syntactically annotated corpus: The prague dependency treebank
    • Studies in Honor of Jarmila Panevová.. Prague Karolinum, Charles University Press
    • Jan Hajič. 1998. Building a Syntactically Annotated Corpus: The Prague Dependency Treebank. In Issues of Valency and Meaning. Studies in Honor of Jarmila Panevová, pages 12-19. Prague Karolinum, Charles University Press.
    • (1998) Issues of Valency and Meaning , pp. 12-19
    • Hajič, J.1
  • 11
    • 80053551637 scopus 로고    scopus 로고
    • Simple semi-supervised dependency parsing
    • T. Koo, X. Carreras, and M. Collins. 2008. Simple Semi-supervised Dependency Parsing. In Proc. of ACL-08: HLT, pages 595-603.
    • (2008) Proc. of ACL-08: HLT , pp. 595-603
    • Koo, T.1    Carreras, X.2    Collins, M.3
  • 12
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Proc. of ICML-2001, pages 282-289.
    • (2001) Proc. of ICML-2001 , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 13
    • 33646887390 scopus 로고
    • On the limited memory bfgs method for large scale optimization
    • D. C. Liu and J. Nocedal. 1989. On the Limited Memory BFGS Method for Large Scale Optimization. Math. Programming, Ser. B, 45(3):503-528.
    • (1989) Math. Programming, Ser. B , vol.45 , Issue.3 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 14
    • 34249852033 scopus 로고
    • Building a large annotated corpus of english: The penn treebank
    • M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. 1994. Building a Large Annotated Corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313-330.
    • (1994) Computational Linguistics , vol.19 , Issue.2 , pp. 313-330
    • Marcus, M.P.1    Santorini, B.2    Marcinkiewicz, M.A.3
  • 15
    • 84876798255 scopus 로고    scopus 로고
    • Online learning of approximate dependency parsing algorithms
    • R. McDonald and F. Pereira. 2006. Online Learning of Approximate Dependency Parsing Algorithms. In Proc. of EACL, pages 81-88.
    • (2006) Proc. of EACL , pp. 81-88
    • McDonald, R.1    Pereira, F.2
  • 16
    • 85119623914 scopus 로고    scopus 로고
    • On the complexity of non-projective data-driven dependency parsing
    • R. McDonald and G. Satta. 2007. On the Complexity of Non-Projective Data-Driven Dependency Parsing. In Proc. of IWPT, pages 121-132.
    • (2007) Proc. of IWPT , pp. 121-132
    • McDonald, R.1    Satta, G.2
  • 17
    • 84859925125 scopus 로고    scopus 로고
    • Online large-margin training of dependency parsers
    • R. McDonald, K. Crammer, and F. Pereira. 2005a. Online Large-margin Training of Dependency Parsers. In Proc. of ACL, pages 91-98.
    • (2005) Proc. of ACL , pp. 91-98
    • McDonald, R.1    Crammer, K.2    Pereira, F.3
  • 18
    • 80053274459 scopus 로고    scopus 로고
    • Non-projective dependency parsing using spanning tree algorithms
    • R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005b. Non-projective Dependency Parsing using Spanning Tree Algorithms. In Proc. of HLTEMNLP, pages 523-530.
    • (2005) Proc. of HLTEMNLP , pp. 523-530
    • McDonald, R.1    Pereira, F.2    Ribarov, K.3    Hajič, J.4
  • 21
    • 85124016637 scopus 로고    scopus 로고
    • A maximum entropy model for part-of-speech tagging
    • A. Ratnaparkhi. 1996. A Maximum Entropy Model for Part-of-Speech Tagging. In Proc. of EMNLP, pages 133-142.
    • (1996) Proc. of EMNLP , pp. 133-142
    • Ratnaparkhi, A.1
  • 22
    • 80053357918 scopus 로고    scopus 로고
    • Bootstrapping feature-rich dependency parsers with entropic priors
    • D. A. Smith and J. Eisner. 2007. Bootstrapping Feature-Rich Dependency Parsers with Entropic Priors. In Proc. of EMNLP-CoNLL, pages 667-677.
    • (2007) Proc. of EMNLP-CoNLL , pp. 667-677
    • Smith, D.A.1    Eisner, J.2
  • 23
    • 80053381429 scopus 로고    scopus 로고
    • Probabilistic models of nonprojective dependency trees
    • D. A. Smith and N. A. Smith. 2007. Probabilistic Models of Nonprojective Dependency Trees. In Proc. of EMNLP-CoNLL, pages 132-140.
    • (2007) Proc. of EMNLP-CoNLL , pp. 132-140
    • Smith, D.A.1    Smith, N.A.2
  • 24
    • 84859884966 scopus 로고    scopus 로고
    • Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data
    • J. Suzuki and H. Isozaki. 2008. Semi-supervised Sequential Labeling and Segmentation Using Giga-Word Scale Unlabeled Data. In Proc. of ACL-08: HLT, pages 665-673.
    • (2008) Proc. of ACL-08: HLT , pp. 665-673
    • Suzuki, J.1    Isozaki, H.2
  • 25
    • 80053376246 scopus 로고    scopus 로고
    • Semi-supervised convex training for dependency parsing
    • Q. I. Wang, D. Schuurmans, and D. Lin. 2008. Semi-supervised Convex Training for Dependency Parsing. In Proc. of ACL-08: HLT, pages 532-540.
    • (2008) Proc. of ACL-08: HLT , pp. 532-540
    • Wang, Q.I.1    Schuurmans, D.2    Lin, D.3
  • 26
    • 26044449174 scopus 로고    scopus 로고
    • Statistical dependency analysis with support vector machines
    • H. Yamada and Y. Matsumoto. 2003. Statistical Dependency Analysis with Support Vector Machines. In Proc. of IWPT.
    • (2003) Proc. of IWPT
    • Yamada, H.1    Matsumoto, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.