-
1
-
-
33644660537
-
PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease
-
Finck BN, Kelly DP. PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006;116(3): 615-22.
-
(2006)
J Clin Invest
, vol.116
, Issue.3
, pp. 615-622
-
-
Finck, B.N.1
Kelly, D.P.2
-
2
-
-
33749042331
-
Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration
-
Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell. 2006;127(1): 59-69.
-
(2006)
Cell
, vol.127
, Issue.1
, pp. 59-69
-
-
Cui, L.1
Jeong, H.2
Borovecki, F.3
Parkhurst, C.N.4
Tanese, N.5
Krainc, D.6
-
3
-
-
33750437278
-
Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration
-
Weydt P, Pineda VV, Torrence AE, Libby RT, Satterfield TF, Lazarowski ER, Gilbert ML, Morton GJ, Bammler TK, Strand AD, Cui L, BeyerRP, Easley CN, SmithAC, Krainc D, Luquet S, Sweet IR, SchwartzMW, La Spada AR. Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metab. 2006;4(5): 349-62.
-
(2006)
Cell Metab
, vol.4
, Issue.5
, pp. 349-362
-
-
Weydt, P.1
Pineda, V.V.2
Torrence, A.E.3
Libby, R.T.4
Satterfield, T.F.5
Lazarowski, E.R.6
Gilbert, M.L.7
Morton, G.J.8
Bammler, T.K.9
Strand, A.D.10
Cui, L.11
Beyer, R.P.12
Easley, C.N.13
Smith, A.C.14
Krainc, D.15
Luquet, S.16
Sweet, I.R.17
Schwartz, M.W.18
La Spada, A.R.19
-
4
-
-
84863923855
-
PGC-1α rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function
-
Tsunemi T, Ashe TD, Morrison BE, Soriano KR, Au J, Roque RA, Lazarowski ER, Damian VA, Masliah E, La Spada AR. PGC-1α rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci Transl Med. 2012;4(142): 142.
-
(2012)
Sci Transl Med.
, vol.4
, Issue.142
, pp. 142
-
-
Tsunemi, T.1
Ashe, T.D.2
Morrison, B.E.3
Soriano, K.R.4
Au, J.5
Roque, R.A.6
Lazarowski, E.R.7
Damian, V.A.8
Masliah, E.9
La Spada, A.R.10
-
5
-
-
77955643169
-
Molecular Mechanisms and Potential Therapeutical Targets in Huntington ' s Disease
-
Zuccato C, Valenza M, Cattaneo E. Molecular Mechanisms and Potential Therapeutical Targets in Huntington ' s Disease. Physiol Rev. 2010;905-81.
-
(2010)
Physiol Rev.
, pp. 905-981
-
-
Zuccato, C.1
Valenza, M.2
Cattaneo, E.3
-
6
-
-
79959986144
-
Peroxisome-proliferator-activated receptor gamma coactivator 1 α contributes to dysmyelination in experimental models of Huntington’s disease
-
Xiang Z, Valenza M, Cui L, Leoni V, Jeong HK, Brilli E, Zhang J, Peng Q, DuanW, Reeves SA, Cattaneo E, Krainc D. Peroxisome-proliferator-activated receptor gamma coactivator 1 α contributes to dysmyelination in experimental models of Huntington’s disease. J Neurosci. 2011;31(26): 9544-53.
-
(2011)
J Neurosci
, vol.31
, Issue.26
, pp. 9544-9553
-
-
Xiang, Z.1
Valenza, M.2
Cui, L.3
Leoni, V.4
Jeong, H.K.5
Brilli, E.6
Zhang, J.7
Peng, Q.8
Duan, W.9
Reeves, S.A.10
Cattaneo, E.11
Krainc, D.12
-
7
-
-
77952547233
-
10 Years of NADDependent SIR2 Family Deacetylases- Implications for Metabolic Diseases
-
Shin-ichiro Imai and Leonard Guarente. 10 Years of NADDependent SIR2 Family Deacetylases- Implications for Metabolic Diseases. Trends Pharmacol Sci. 2010;31(5): 212-20.
-
(2010)
Trends Pharmacol Sci
, vol.31
, Issue.5
, pp. 212-220
-
-
Imai, S.1
Guarente, L.2
-
8
-
-
33748331215
-
New mouse oligodendrocyte precursor (mOP) cells for studies on oligodendrocyte maturation and function
-
Lin T, Xiang Z, Cui L, Stallcup W, Reeves S. New mouse oligodendrocyte precursor (mOP) cells for studies on oligodendrocyte maturation and function. J Neurosci Meth. 2006;157(2): 187-94.
-
(2006)
J Neurosci Meth
, vol.157
, Issue.2
, pp. 187-194
-
-
Lin, T.1
Xiang, Z.2
Cui, L.3
Stallcup, W.4
Reeves, S.5
-
9
-
-
69249116960
-
SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma Co-activator-1alpha (PGC-1alpha) gene in skeletal muscle through the PGC-1alpha autoregulatory loop and interaction with MyoD
-
Amat R, Planavila A, Chen SL, Iglesias R, Giralt M, Villarroya F. SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma Co-activator-1alpha (PGC-1alpha) gene in skeletal muscle through the PGC-1alpha autoregulatory loop and interaction with MyoD. J Biol Chem. 2009;284(33): 21872-80.
-
(2009)
J Biol Chem
, vol.284
, Issue.33
, pp. 21872-21880
-
-
Amat, R.1
Planavila, A.2
Chen, S.L.3
Iglesias, R.4
Giralt, M.5
Villarroya, F.6
-
10
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434: 113-8.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
11
-
-
84855563516
-
Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway
-
Jeong H, Cohen DE, Cui L, Supinski A, Savas JN, Mazzulli JR, Yates JR, 3rd, Bordone L, Guarente L, Krainc D. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nature Med. 2012;18(1): 159-65.
-
(2012)
Nature Med
, vol.18
, Issue.1
, pp. 159-165
-
-
Jeong, H.1
Cohen, D.E.2
Cui, L.3
Supinski, A.4
Savas, J.N.5
Mazzulli, J.R.6
Yates 3rd, J.R.7
Bordone, L.8
Guarente, L.9
Krainc, D.10
-
12
-
-
80052193535
-
Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise
-
Philp A, Chen A, Lan D, Meyer GA, Murphy AN, Knapp AE, Olfert IM, McCurdy CE, Marcotte GR, Hogan MC, Baar K, Schenk S. Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise. J Biol Chem. 2011;286(35): 30561-70.
-
(2011)
J Biol Chem
, vol.286
, Issue.35
, pp. 30561-30570
-
-
Philp, A.1
Chen, A.2
Lan, D.3
Meyer, G.A.4
Murphy, A.N.5
Knapp, A.E.6
Olfert, I.M.7
McCurdy, C.E.8
Marcotte, G.R.9
Hogan, M.C.10
Baar, K.11
Schenk, S.12
-
13
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
Milne JC, Lambert PD, Schenk S, CarneyDP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2009;450(7170): 712-6.
-
(2009)
Nature
, vol.450
, Issue.7170
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
Carney, D.P.4
Smith, J.J.5
Gagne, D.J.6
Jin, L.7
Boss, O.8
Perni, R.B.9
Vu, C.B.10
Bemis, J.E.11
Xie, R.12
Disch, J.S.13
Ng, P.Y.14
Nunes, J.J.15
Lynch, A.V.16
Yang, H.17
Galonek, H.18
Israelian, K.19
Choy, W.20
Iffland, A.21
Lavu, S.22
Medvedik, O.23
Sinclair, D.A.24
Olefsky, J.M.25
Jirousek, M.R.26
Elliott, P.J.27
Westphal, C.H.28
more..
-
14
-
-
84860477354
-
SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function
-
Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, Hubbard BP, Varela AT, Davis JG, Varamini B, Hafner A, Moaddel R, Rolo AP, Coppari R, Palmeira CM, de Cabo R, Baur JA, Sinclair DA. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5): 675-90.
-
(2012)
Cell Metab
, vol.15
, Issue.5
, pp. 675-690
-
-
Price, N.L.1
Gomes, A.P.2
Ling, A.J.3
Duarte, F.V.4
Martin-Montalvo, A.5
North, B.J.6
Agarwal, B.7
Ye, L.8
Ramadori, G.9
Teodoro, J.S.10
Hubbard, B.P.11
Varela, A.T.12
Davis, J.G.13
Varamini, B.14
Hafner, A.15
Moaddel, R.16
Rolo, A.P.17
Coppari, R.18
Palmeira, C.M.19
de Cabo, R.20
Baur, J.A.21
Sinclair, D.A.22
more..
-
15
-
-
34848835736
-
Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis
-
Eaton JS, Lin ZP, Sartorelli AC, Bonawitz ND, Shadel GS. Ataxia-telangiectasia mutated kinase regulates ribonucleotide reductase and mitochondrial homeostasis. J Clin Invest. 2007;117(9).
-
(2007)
J Clin Invest.
, vol.117
, Issue.9
-
-
Eaton, J.S.1
Lin, Z.P.2
Sartorelli, A.C.3
Bonawitz, N.D.4
Shadel, G.S.5
-
16
-
-
77950246109
-
SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1
-
Pacholec M, Bleasdale JE, Chrunyk B, Cunningham D, Flynn D, Garofalo RS, Griffith D, Griffor M, Loulakis P, Pabst B, Qiu X, Stockman B, Thanabal V, Varghese A, Ward J, Withka J, Ahn K. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010;285(11): 8340-51.
-
(2010)
J Biol Chem
, vol.285
, Issue.11
, pp. 8340-8351
-
-
Pacholec, M.1
Bleasdale, J.E.2
Chrunyk, B.3
Cunningham, D.4
Flynn, D.5
Garofalo, R.S.6
Griffith, D.7
Griffor, M.8
Loulakis, P.9
Pabst, B.10
Qiu, X.11
Stockman, B.12
Thanabal, V.13
Varghese, A.14
Ward, J.15
Withka, J.16
Ahn, K.17
-
17
-
-
70350524083
-
Resveratrol is not a direct activator of SIRT1 enzyme activity
-
Beher D, Wu J, Cumine S, Kim KW, Lu S-C, Atangan L, Wang M. Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des. 2009;74(6): 619-24.
-
(2009)
Chem Biol Drug Des
, vol.74
, Issue.6
, pp. 619-624
-
-
Beher, D.1
Wu, J.2
Cumine, S.3
Kim, K.W.4
Lu, S.-C.5
Atangan, L.6
Wang, M.7
-
18
-
-
34547545892
-
AMPactivated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
-
Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMPactivated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 2007;104(29): 12017-22.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, Issue.29
, pp. 12017-12022
-
-
Jäger, S.1
Handschin, C.2
St-Pierre, J.3
Spiegelman, B.M.4
-
19
-
-
34249846128
-
Resveratrol stimulates AMP kinase activity in neurons
-
Dasgupta B, Milbrandt J. Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci USA. 2007; 104(17): 7217-22.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, Issue.17
, pp. 7217-7222
-
-
Dasgupta, B.1
Milbrandt, J.2
-
20
-
-
54849425547
-
Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
-
Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, Lambert PD, Mataki C, Elliott PJ, Auwerx J. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008;8(5): 347-58.
-
(2008)
Cell Metab
, vol.8
, Issue.5
, pp. 347-358
-
-
Feige, J.N.1
Lagouge, M.2
Canto, C.3
Strehle, A.4
Houten, S.M.5
Milne, J.C.6
Lambert, P.D.7
Mataki, C.8
Elliott, P.J.9
Auwerx, J.10
-
21
-
-
77957349477
-
AMP-activated protein kinase and its downstream transcriptional pathways
-
Cantó C, Auwerx J. AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci. 2010;67(20): 3407-23.
-
(2010)
Cell Mol Life Sci
, vol.67
, Issue.20
, pp. 3407-3423
-
-
Cantó, C.1
Auwerx, J.2
-
22
-
-
77955660387
-
Resveratrol protects against peripheral deficits in a mouse model of Huntington’s disease
-
Ho DJ, CalingasanNY, Wille E, Dumont M, BealMF. Resveratrol protects against peripheral deficits in a mouse model of Huntington’s disease. Exp Neurol. 2010;225(1): 74-84.
-
(2010)
Exp Neurol
, vol.225
, Issue.1
, pp. 74-84
-
-
Ho, D.J.1
Calingasan, N.Y.2
Wille, E.3
Dumont, M.4
Beal, M.F.5
|