메뉴 건너뛰기




Volumn 2, Issue , 2014, Pages 94-103

Fast self-supervised on-line training for object recognition specifically for robotic applications

Author keywords

Invariant Features; Local Feature Orientation; Object Recognition; On line Training; Vision Pipeline

Indexed keywords

ARTS COMPUTING; COMPUTER VISION; OBJECT RECOGNITION; ONLINE SYSTEMS; PERSONNEL TRAINING; PIPELINES;

EID: 84906902928     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5220/0004688000940103     Document Type: Conference Paper
Times cited : (9)

References (29)
  • 14
    • 84863667814 scopus 로고    scopus 로고
    • The KIT object models database: An object model database for object recognition, localization and manipulation in service robotics
    • Kasper, A., Xue, Z., and Dillmann, R. (2012). The KIT object models database: An object model database for object recognition, localization and manipulation in service robotics. The International Journal of Robotics Research (IHRR), 31(8):927-934.
    • (2012) The International Journal of Robotics Research (IHRR) , vol.31 , Issue.8 , pp. 927-934
    • Kasper, A.1    Xue, Z.2    Dillmann, R.3
  • 17
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scaleinvariant keypoints
    • Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. Int. J. Comput. Vision, 60(2):91-110.
    • (2004) Int. J. Comput. Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.