-
3
-
-
0000544839
-
-
K. Tanaka, H. Yoda, Y. Isobe, A. Kaji, J. Org. Chem. 1986, 51, 1856-1866
-
(1986)
J. Org. Chem.
, vol.51
, pp. 1856-1866
-
-
Tanaka, K.1
Yoda, H.2
Isobe, Y.3
Kaji, A.4
-
4
-
-
2142652167
-
-
K. Tanaka, H. Yoda, Y. Isobe, A. Kaji, Tetrahedron Lett. 1985, 26, 1337-1340.
-
(1985)
Tetrahedron Lett.
, vol.26
, pp. 1337-1340
-
-
Tanaka, K.1
Yoda, H.2
Isobe, Y.3
Kaji, A.4
-
5
-
-
70350747471
-
-
T. Suzuki, J. Atsumi, T. Sengoku, M. Takahashi, H. Yoda, J. Organomet. Chem. 2010, 695, 128-136
-
(2010)
J. Organomet. Chem.
, vol.695
, pp. 128-136
-
-
Suzuki, T.1
Atsumi, J.2
Sengoku, T.3
Takahashi, M.4
Yoda, H.5
-
6
-
-
45649084700
-
-
T. Suzuki, T. Sengoku, M. Takahashi, H. Yoda, Tetrahedron Lett. 2008, 49, 4701-4703.
-
(2008)
Tetrahedron Lett.
, vol.49
, pp. 4701-4703
-
-
Suzuki, T.1
Sengoku, T.2
Takahashi, M.3
Yoda, H.4
-
7
-
-
84873635491
-
-
D. L. Silverio, S. Torker, T. Pilyugina, E. M. Vieira, M. L. Snapper, F. Haeffner, A. H. Hoveyda, Nature 2013, 494, 216-221
-
(2013)
Nature
, vol.494
, pp. 216-221
-
-
Silverio, D.L.1
Torker, S.2
Pilyugina, T.3
Vieira, E.M.4
Snapper, M.L.5
Haeffner, F.6
Hoveyda, A.H.7
-
8
-
-
70350613421
-
-
J. Itoh, S. B. Han, M. J. Krische, Angew. Chem. 2009, 121, 6431-6434
-
(2009)
Angew. Chem.
, vol.121
, pp. 6431-6434
-
-
Itoh, J.1
Han, S.B.2
Krische, M.J.3
-
9
-
-
70349908289
-
-
Angew. Chem. Int. Ed. 2009, 48, 6313-6316
-
(2009)
Angew. Chem. Int. Ed.
, vol.48
, pp. 6313-6316
-
-
-
10
-
-
33846842437
-
-
A. K. Franz, P. D. Dreyfuss, S. L. Schreiber, J. Am. Chem. Soc. 2007, 129, 1020-1021
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 1020-1021
-
-
Franz, A.K.1
Dreyfuss, P.D.2
Schreiber, S.L.3
-
13
-
-
79952543804
-
-
R. A. Kitson, A. Millemaggi, R. J. K. Taylor, Angew. Chem. 2009, 121, 9590-9615
-
(2009)
Angew. Chem.
, vol.121
, pp. 9590-9615
-
-
Kitson, R.A.1
Millemaggi, A.2
Taylor, R.J.K.3
-
14
-
-
73249124562
-
-
Angew. Chem. Int. Ed. 2009, 48, 9426-9451
-
(2009)
Angew. Chem. Int. Ed.
, vol.48
, pp. 9426-9451
-
-
-
15
-
-
33748764203
-
-
A. Bachelier, R. Mayer, C. D. Klein, Bioorg. Med. Chem. Lett. 2006, 16, 5605-5609
-
(2006)
Bioorg. Med. Chem. Lett.
, vol.16
, pp. 5605-5609
-
-
Bachelier, A.1
Mayer, R.2
Klein, C.D.3
-
16
-
-
8644276334
-
-
B. Siedle, A. J. García-Piñeres, R. Murillo, J. Schulte-Mönting, V. Castro, P. Rüngeler, C. A. Klaas, F. B. Da Costa, W. Kisiel, I. Merfort, J. Med. Chem. 2004, 47, 6042-6054
-
(2004)
J. Med. Chem.
, vol.47
, pp. 6042-6054
-
-
Siedle, B.1
García-Piñeres, A.J.2
Murillo, R.3
Schulte-Mönting, J.4
Castro, V.5
Rüngeler, P.6
Klaas, C.A.7
Da Costa, F.B.8
Kisiel, W.9
Merfort, I.10
-
17
-
-
0038809627
-
-
P. Rüngeler, V. Castro, G. Mora, N. Gören, W. Vichnewski, H. L. Pahl, I. Merfort, T. J. Schmidt, Bioorg. Med. Chem. 1999, 7, 2343-2352.
-
(1999)
Bioorg. Med. Chem.
, vol.7
, pp. 2343-2352
-
-
Rüngeler, P.1
Castro, V.2
Mora, G.3
Gören, N.4
Vichnewski, W.5
Pahl, H.L.6
Merfort, I.7
Schmidt, T.J.8
-
18
-
-
84880812209
-
-
M. Takahashi, T. Sudo, Y. Murata, T. Sengoku, H. Yoda, Nat. Prod. Commun. 2013, 8, 889-896
-
(2013)
Nat. Prod. Commun.
, vol.8
, pp. 889-896
-
-
Takahashi, M.1
Sudo, T.2
Murata, Y.3
Sengoku, T.4
Yoda, H.5
-
19
-
-
77957126882
-
-
M. Takahashi, J. Atsumi, T. Sengoku, H. Yoda, Synthesis 2010, 3282-3288.
-
(2010)
Synthesis
, pp. 3282-3288
-
-
Takahashi, M.1
Atsumi, J.2
Sengoku, T.3
Yoda, H.4
-
20
-
-
84890962543
-
-
Y. Murata, M. Takahashi, F. Yagishita, M. Sakamoto, T. Sengoku, H. Yoda, Org. Lett. 2013, 15, 6182-6185.
-
(2013)
Org. Lett.
, vol.15
, pp. 6182-6185
-
-
Murata, Y.1
Takahashi, M.2
Yagishita, F.3
Sakamoto, M.4
Sengoku, T.5
Yoda, H.6
-
23
-
-
84872452603
-
-
S. Kato, T. Yoshino, M. Shibasaki, M. Kanai, S. Matsunaga, Angew. Chem. 2012, 124, 7113-7116
-
(2012)
Angew. Chem.
, vol.124
, pp. 7113-7116
-
-
Kato, S.1
Yoshino, T.2
Shibasaki, M.3
Kanai, M.4
Matsunaga, S.5
-
24
-
-
84863694927
-
-
Angew. Chem. Int. Ed. 2012, 51, 7007-7010
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 7007-7010
-
-
-
26
-
-
36749025633
-
-
Angew. Chem. Int. Ed. 2007, 46, 8748-8758
-
(2007)
Angew. Chem. Int. Ed.
, vol.46
, pp. 8748-8758
-
-
-
28
-
-
84884511019
-
-
Q.-L. Wang, L. Peng, F.-Y. Wang, M.-L. Zhang, L.-N. Jia, F. Tian, X.-Y. Xu, L.-X. Wang, Chem. Commun. 2013, 49, 9422-9424
-
(2013)
Chem. Commun.
, vol.49
, pp. 9422-9424
-
-
Wang, Q.-L.1
Peng, L.2
Wang, F.-Y.3
Zhang, M.-L.4
Jia, L.-N.5
Tian, F.6
Xu, X.-Y.7
Wang, L.-X.8
-
32
-
-
0000680268
-
-
Y. Motoyama, O. Kurihara, K. Murata, K. Aoki, H. Nishiyama, Organometallics 2000, 19, 1025-1034
-
(2000)
Organometallics
, vol.19
, pp. 1025-1034
-
-
Motoyama, Y.1
Kurihara, O.2
Murata, K.3
Aoki, K.4
Nishiyama, H.5
-
33
-
-
0000487271
-
-
H. Nishiyama, H. Sakaguchi, T. Nakamura, M. Horihata, M. Kondo, K. Itoh, Organometallics 1989, 8, 846-848.
-
(1989)
Organometallics
, vol.8
, pp. 846-848
-
-
Nishiyama, H.1
Sakaguchi, H.2
Nakamura, T.3
Horihata, M.4
Kondo, M.5
Itoh, K.6
-
34
-
-
84862864632
-
-
N. R. Ball-Jones, J. J. Badillo, A. K. Franz, Org. Biomol. Chem. 2012, 10, 5165-5181
-
(2012)
Org. Biomol. Chem.
, vol.10
, pp. 5165-5181
-
-
Ball-Jones, N.R.1
Badillo, J.J.2
Franz, A.K.3
-
35
-
-
84859713750
-
-
J. P. MacDonald, J. J. Badillo, G. E. Arevalo, A. Silva-García, A. K. Franz, ACS Comb. Sci. 2012, 14, 285-293
-
(2012)
ACS Comb. Sci.
, vol.14
, pp. 285-293
-
-
Macdonald, J.P.1
Badillo, J.J.2
Arevalo, G.E.3
Silva-García, A.4
Franz, A.K.5
-
36
-
-
80055097274
-
-
E. G. Gutierrez, C. J. Wong, A. H. Sahin, A. K. Franz, Org. Lett. 2011, 13, 5754-5757
-
(2011)
Org. Lett.
, vol.13
, pp. 5754-5757
-
-
Gutierrez, E.G.1
Wong, C.J.2
Sahin, A.H.3
Franz, A.K.4
-
37
-
-
80053181266
-
-
J. J. Badillo, A. Silva-García, B. H. Shupe, J. C. Fettinger, A. K. Franz, Tetrahedron Lett. 2011, 52, 5550-5553
-
(2011)
Tetrahedron Lett.
, vol.52
, pp. 5550-5553
-
-
Badillo, J.J.1
Silva-García, A.2
Shupe, B.H.3
Fettinger, J.C.4
Franz, A.K.5
-
38
-
-
74849131136
-
-
N. V. Hanhan, A. H. Sahin, T. W. Chang, J. C. Fettinger, A. K. Franz, Angew. Chem. Int. Ed. 2010, 49, 744-747.
-
(2010)
Angew. Chem. Int. Ed.
, vol.49
, pp. 744-747
-
-
Hanhan, N.V.1
Sahin, A.H.2
Chang, T.W.3
Fettinger, J.C.4
Franz, A.K.5
-
39
-
-
84859704829
-
-
N. V. Hanhan, Y. C. Tang, N. T. Tran, A. K. Franz, Org. Lett. 2012, 14, 2218-2221
-
(2012)
Org. Lett.
, vol.14
, pp. 2218-2221
-
-
Hanhan, N.V.1
Tang, Y.C.2
Tran, N.T.3
Franz, A.K.4
-
40
-
-
84860844949
-
-
N. V. Hanhan, N. R. Ball-Jones, N. T. Tran, A. K. Franz, Angew. Chem. 2012, 124, 1013-1016
-
(2012)
Angew. Chem.
, vol.124
, pp. 1013-1016
-
-
Hanhan, N.V.1
Ball-Jones, N.R.2
Tran, N.T.3
Franz, A.K.4
-
42
-
-
84880033299
-
-
B. H. Shupe, E. E. Allen, J. P. MacDonald, S. O. Wilson, A. K. Franz, Org. Lett. 2013, 15, 3218-3221
-
(2013)
Org. Lett.
, vol.15
, pp. 3218-3221
-
-
Shupe, B.H.1
Allen, E.E.2
Macdonald, J.P.3
Wilson, S.O.4
Franz, A.K.5
-
43
-
-
79851476611
-
-
J. J. Badillo, G. E. Arevalo, J. C. Fettinger, A. K. Franz, Org. Lett. 2011, 13, 418-421.
-
(2011)
Org. Lett.
, vol.13
, pp. 418-421
-
-
Badillo, J.J.1
Arevalo, G.E.2
Fettinger, J.C.3
Franz, A.K.4
-
44
-
-
85013280598
-
-
2=0.1116, GoF=1.228, and Flack absolute structure parameter=0.10(6) for 2582 reflections and 222 parameters.
-
2=0.1116, GoF=1.228, and Flack absolute structure parameter=0.10(6) for 2582 reflections and 222 parameters.
-
-
-
-
45
-
-
85013329434
-
-
For the absolute stereochemistry of 3 h, the R configuration was assigned to the newly created stereogenic center by comparison of the optical rotation with that reported in the literature (see Ref. [13b]). The opposite stereochemical preference in addition to the observed very low enantioselectivity (25 % ee) can be interpreted in terms of inefficient chirality transfer from the chiral environment at the catalytic center.
-
For the absolute stereochemistry of 3 h, the R configuration was assigned to the newly created stereogenic center by comparison of the optical rotation with that reported in the literature (see Ref. [13b]). The opposite stereochemical preference in addition to the observed very low enantioselectivity (25 % ee) can be interpreted in terms of inefficient chirality transfer from the chiral environment at the catalytic center.
-
-
-
-
49
-
-
12344274699
-
-
J. Lu, S.-J. Ji, Y.-C. Teo, T.-P. Loh, Org. Lett. 2005, 7, 159-161.
-
(2005)
Org. Lett.
, vol.7
, pp. 159-161
-
-
Lu, J.1
Ji, S.-J.2
Teo, Y.-C.3
Loh, T.-P.4
-
50
-
-
85013258294
-
-
The lower efficiency of the reaction than with the isatin substrates is probably responsible for intrinsic low reactivity of the acyclic ketoamide system, which would be attributed to the greater conformational flexibility. The ee value of P2 was determined by HPLC analysis with the Daicel Chiralpak IF.
-
The lower efficiency of the reaction than with the isatin substrates is probably responsible for intrinsic low reactivity of the acyclic ketoamide system, which would be attributed to the greater conformational flexibility. The ee value of P2 was determined by HPLC analysis with the Daicel Chiralpak IF.
-
-
-
-
51
-
-
85013308665
-
-
In the mechanistic studies with the hydrogen-containing additives, it was found that use of imidazole (1.2 equiv) had a detrimental effect on both the reactivity and enantioselectivity of the amide allylation to 3 g. In this case, only a sluggish and incomplete reaction took place over 72 h to result in the formation of 3 g with an isolated yield of 12 % as a completely racemic product.
-
In the mechanistic studies with the hydrogen-containing additives, it was found that use of imidazole (1.2 equiv) had a detrimental effect on both the reactivity and enantioselectivity of the amide allylation to 3 g. In this case, only a sluggish and incomplete reaction took place over 72 h to result in the formation of 3 g with an isolated yield of 12 % as a completely racemic product.
-
-
-
-
52
-
-
84906780993
-
-
1H NMR spectroscopic studies allowed us to gain additional insight into the proposed transition-state structure. The details are given in the Supporting Information.
-
1H NMR spectroscopic studies allowed us to gain additional insight into the proposed transition-state structure. The details are given in the Supporting Information.
-
-
-
-
53
-
-
85013345969
-
-
2=0.1120, GoF=1.068, and Flack absolute structure parameter=0.1(3) for 1984 reflections and 155 parameters.
-
2=0.1120, GoF=1.068, and Flack absolute structure parameter=0.1(3) for 1984 reflections and 155 parameters.
-
-
-
-
56
-
-
84906788219
-
-
Clearly, one can see that these types of compounds will be more easily accessed by the available amide allylation/lactonization sequence from the respective C5-halogenated isatins.
-
Clearly, one can see that these types of compounds will be more easily accessed by the available amide allylation/lactonization sequence from the respective C5-halogenated isatins.
-
-
-
-
57
-
-
0037100119
-
-
A.-S. Castanet, F. Colobert, P.-E. Broutin, Tetrahedron Lett. 2002, 43, 5047-5048
-
(2002)
Tetrahedron Lett.
, vol.43
, pp. 5047-5048
-
-
Castanet, A.-S.1
Colobert, F.2
Broutin, P.-E.3
-
58
-
-
0029941741
-
-
M. C. Carreño, J. L. Garucía Ruano, G. Sanz, M. A. Toledo, A. Urbano, Tetrahedron Lett. 1996, 37, 4081-4084.
-
(1996)
Tetrahedron Lett.
, vol.37
, pp. 4081-4084
-
-
Carreño, M.C.1
Ruano, J.L.G.2
Sanz, G.3
Toledo, M.A.4
Urbano, A.5
-
59
-
-
85013313550
-
-
2=0.0706, GoF=1.062, and Flack absolute structure parameter=0.020(12) for 3675 reflections and 191 parameters.
-
2=0.0706, GoF=1.062, and Flack absolute structure parameter=0.020(12) for 3675 reflections and 191 parameters.
-
-
-
-
60
-
-
85013280586
-
-
2=0.0636, GoF=1.027, and Flack absolute structure parameter=-0.028(18) for 3715 reflections and 192 parameters.
-
2=0.0636, GoF=1.027, and Flack absolute structure parameter=-0.028(18) for 3715 reflections and 192 parameters.
-
-
-
-
61
-
-
85013282104
-
-
2=0.0740, GoF=1.031, and Flack absolute structure parameter=0.049(6) for 2909 reflections and 217 parameters.
-
2=0.0740, GoF=1.031, and Flack absolute structure parameter=0.049(6) for 2909 reflections and 217 parameters.
-
-
-
-
62
-
-
85013345960
-
-
2=0.1052, GoF=1.005, and Flack absolute structure parameter=-0.02(2) for 3532 reflections and 208 parameters.
-
2=0.1052, GoF=1.005, and Flack absolute structure parameter=-0.02(2) for 3532 reflections and 208 parameters.
-
-
-
-
63
-
-
85013309806
-
-
2=0.1031, GoF=1.108, and Flack absolute structure parameter=0.09(2) for 2988 reflections and 166 parameters.
-
2=0.1031, GoF=1.108, and Flack absolute structure parameter=0.09(2) for 2988 reflections and 166 parameters.
-
-
-
-
64
-
-
85013258262
-
-
2=0.0563, GoF=1.039, and Flack absolute structure parameter=0.064(8) for 1717 reflections and 164 parameters.
-
2=0.0563, GoF=1.039, and Flack absolute structure parameter=0.064(8) for 1717 reflections and 164 parameters.
-
-
-
-
65
-
-
85013280571
-
-
2=0.1076, GoF=1.081, and Flack absolute structure parameter=0.065(5) for 2109 reflections and 164 parameters.
-
2=0.1076, GoF=1.081, and Flack absolute structure parameter=0.065(5) for 2109 reflections and 164 parameters.
-
-
-
-
66
-
-
84906786141
-
-
On the basis of these results, the absolute configurations of 4 g - i, which were left unassigned, could be determined to be S by distinct correlations with the chiral HPLC analyses of the corresponding cyclization products with those of the authentic samples of (S)- 6 a - 8 a, respectively.
-
On the basis of these results, the absolute configurations of 4 g-i, which were left unassigned, could be determined to be S by distinct correlations with the chiral HPLC analyses of the corresponding cyclization products with those of the authentic samples of (S)- 6 a-8 a, respectively.
-
-
-
-
67
-
-
77955829634
-
-
D. C. Harrowven, D. P. Curran, S. L. Kostiuk, I. L. Wallis-Guy, S. Whiting, K. J. Stenning, B. Tang, E. Packard, L. Nanson, Chem. Commun. 2010, 46, 6335-6337.
-
(2010)
Chem. Commun.
, vol.46
, pp. 6335-6337
-
-
Harrowven, D.C.1
Curran, D.P.2
Kostiuk, S.L.3
Wallis-Guy, I.L.4
Whiting, S.5
Stenning, K.J.6
Tang, B.7
Packard, E.8
Nanson, L.9
|