메뉴 건너뛰기




Volumn 7, Issue 1, 2013, Pages 3004-3056

Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization

Author keywords

Convex geometry; Deconvolution; High dimensions; Non negativity constraints; Persistence; Random matrices; Separating hyperplane; Sparse recovery

Indexed keywords


EID: 84892394231     PISSN: 19357524     EISSN: None     Source Type: Journal    
DOI: 10.1214/13-EJS868     Document Type: Article
Times cited : (179)

References (64)
  • 1
    • 78651110110 scopus 로고    scopus 로고
    • A split Bregman method for nonnegative sparsity penalized least squares with applications to hyperspectral demixing
    • In
    • Szlam, A., Guo, Z., and Osher, S. A split Bregman method for nonnegative sparsity penalized least squares with applications to hyperspectral demixing. In IEEE International Conference on Image Processing, 2010.
    • (2010) IEEE International Conference on Image Processing
    • Szlam, A.1    Guo, Z.2    Osher, S.3
  • 2
    • 33750149637 scopus 로고    scopus 로고
    • Covariance-preconditioned iterative methods for nonnegatively constrained astronomical imaging
    • MR2205619
    • Bardsley, J. and Nagy, J. Covariance-preconditioned iterative methods for nonnegatively constrained astronomical imaging. SIAM Journal on Matrix Analysis and Applications, 27:1184-1198, 2006. MR2205619
    • (2006) SIAM Journal on Matrix Analysis and Applications , vol.27 , pp. 1184-1198
    • Bardsley, J.1    Nagy, J.2
  • 4
    • 82255196005 scopus 로고    scopus 로고
    • Square root lasso: Pivotal recovery of sparse signals via conic programming
    • MR2860324
    • Belloni, A., Chernozukov, V., and Wang, L. Square root lasso: Pivotal recovery of sparse signals via conic programming. Biometrika, 98:791-806, 2011. MR2860324
    • (2011) Biometrika , vol.98 , pp. 791-806
    • Belloni, A.1    Chernozukov, V.2    Wang, L.3
  • 5
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and Dantzig selector
    • MR2533469
    • Bickel, P., Ritov, Y., and Tsybakov, A. Simultaneous analysis of lasso and Dantzig selector. The Annals of Statistics, 37:1705-1732, 2009. MR2533469
    • (2009) The Annals of Statistics , vol.37 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 7
    • 55349132734 scopus 로고    scopus 로고
    • On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations
    • MR2589866
    • Bruckstein, A., Elad, M., and Zibulevsky, M. On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations. IEEE Transactions on Information Theory, 54:4813-4820, 2008. MR2589866
    • (2008) IEEE Transactions on Information Theory , vol.54 , pp. 4813-4820
    • Bruckstein, A.1    Elad, M.2    Zibulevsky, M.3
  • 13
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • MR2382644
    • Candes, E. and Tao, T. The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics, 35:2313-2351, 2007. MR2382644
    • (2007) The Annals of Statistics , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 17
    • 22144471532 scopus 로고    scopus 로고
    • Neighbourliness of randomly projected simplices in high dimensions
    • MR2168716
    • Donoho, D. and Tanner, J. Neighbourliness of randomly projected simplices in high dimensions. Proceedings of the National Academy of Science, 102:9452-9457, 2005. MR2168716
    • (2005) Proceedings of the National Academy of Science , vol.102 , pp. 9452-9457
    • Donoho, D.1    Tanner, J.2
  • 18
    • 22144488449 scopus 로고    scopus 로고
    • Sparse nonnegative solution of underdetermined linear equations by linear programming
    • MR2168715
    • Donoho, D. and Tanner, J. Sparse nonnegative solution of underdetermined linear equations by linear programming. Proceedings of the National Academy of Science, 102:9446-9451, 2005. MR2168715
    • (2005) Proceedings of the National Academy of Science , vol.102 , pp. 9446-9451
    • Donoho, D.1    Tanner, J.2
  • 19
    • 77950517814 scopus 로고    scopus 로고
    • Counting the faces of randomly-projected hypercubes and orthants, with applications
    • MR2587835
    • Donoho, D. and Tanner, J. Counting the faces of randomly-projected hypercubes and orthants, with applications. Discrete and Computational Geometry, 43:522-541, 2010. MR2587835
    • (2010) Discrete and Computational Geometry , vol.43 , pp. 522-541
    • Donoho, D.1    Tanner, J.2
  • 20
    • 0001243071 scopus 로고
    • The detection of defective members of large populations
    • Dorfman, R. The detection of defective members of large populations. The Annals of Mathematical Statistics, 14:436-440, 1943.
    • (1943) The Annals of Mathematical Statistics , vol.14 , pp. 436-440
    • Dorfman, R.1
  • 24
    • 31344454903 scopus 로고    scopus 로고
    • Persistence in high-dimensional linear predictor selection and the virtue of overparametrization
    • MR2108039
    • Greenshtein, E. and Ritov, Y. Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli, 6:971-988, 2004. MR2108039
    • (2004) Bernoulli , vol.6 , pp. 971-988
    • Greenshtein, E.1    Ritov, Y.2
  • 25
  • 26
    • 84871544368 scopus 로고    scopus 로고
    • High-dimensional regression with unknown variance
    • MR3025131
    • Huet, S., Giraud, C., and Verzelen, N. High-dimensional regression with unknown variance. Statistical Science, 27:500-518, 2012. MR3025131
    • (2012) Statistical Science , vol.27 , pp. 500-518
    • Huet, S.1    Giraud, C.2    Verzelen, N.3
  • 27
    • 79251469431 scopus 로고    scopus 로고
    • Tackling box-constrained convex optimization via a new projected quasi-Newton approach
    • MR2763737
    • Kim, D., Sra, S., and Dhillon, I. Tackling box-constrained convex optimization via a new projected quasi-Newton approach. SIAM Journal on Scientific Computing, 32:3548-3563, 2010. MR2763737
    • (2010) SIAM Journal on Scientific Computing , vol.32 , pp. 3548-3563
    • Kim, D.1    Sra, S.2    Dhillon, I.3
  • 30
    • 0034287155 scopus 로고    scopus 로고
    • Parametric deconvolution of positive spike trains
    • MR1805784
    • Li, L. and Speed, T. Parametric deconvolution of positive spike trains. The Annals of Statistics, 28:1279-1301, 2000. MR1805784
    • (2000) The Annals of Statistics , vol.28 , pp. 1279-1301
    • Li, L.1    Speed, T.2
  • 31
    • 4644220345 scopus 로고    scopus 로고
    • Nonnegative deconvolution for time of arrival estimation
    • In
    • Lin, Y., Lee, D., and Saul, L. Nonnegative deconvolution for time of arrival estimation. In ICASSP, 2004.
    • (2004) ICASSP
    • Lin, Y.1    Lee, D.2    Saul, L.3
  • 32
    • 18644382839 scopus 로고    scopus 로고
    • Smallest singular value of random matrices and geometry of random polytopes
    • MR2146352
    • Litvak, A., Pajor, A., Rudelson, M., and Tomczak-Jaegermann, N. Smallest singular value of random matrices and geometry of random polytopes. Advances in Mathematics, 195:491-523, 2005. MR2146352
    • (2005) Advances in Mathematics , vol.195 , pp. 491-523
    • Litvak, A.1    Pajor, A.2    Rudelson, M.3    Tomczak-Jaegermann, N.4
  • 33
    • 56449113372 scopus 로고    scopus 로고
    • Sup-norm convergence rate and sign concentration property of lasso and Dantzig selectors
    • MR2386087
    • Lounici, K. Sup-norm convergence rate and sign concentration property of lasso and Dantzig selectors. The Electronic Journal of Statistics, 2:90-102, 2008. MR2386087
    • (2008) The Electronic Journal of Statistics , vol.2 , pp. 90-102
    • Lounici, K.1
  • 34
    • 84884913302 scopus 로고    scopus 로고
    • Sign-constrained least squares estimation for highdimensional regression
    • MR3066380
    • Meinshausen, N. Sign-constrained least squares estimation for highdimensional regression. The Electronic Journal of Statistics, 7:1607-1631, 2013. MR3066380
    • (2013) The Electronic Journal of Statistics , vol.7 , pp. 1607-1631
    • Meinshausen, N.1
  • 35
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • MR2278363
    • Meinshausen, N. and Bühlmann, P. High-dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34:1436-1462, 2006. MR2278363
    • (2006) The Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 36
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • MR2488351
    • Meinshausen, N. and Yu, B. Lasso-type recovery of sparse representations for high-dimensional data. The Annals of Statistics, 37:246-270, 2009. MR2488351
    • (2009) The Annals of Statistics , vol.37 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 37
    • 77956925453 scopus 로고    scopus 로고
    • Restricted nullspace and eigenvalue properties for correlated Gaussian designs
    • MR2719855
    • Raskutti, G., Wainwright, M., and Yu, B. Restricted nullspace and eigenvalue properties for correlated Gaussian designs. Journal of Machine Learning Research, 11:2241-2259, 2010. MR2719855
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2241-2259
    • Raskutti, G.1    Wainwright, M.2    Yu, B.3
  • 38
    • 84877883600 scopus 로고    scopus 로고
    • Non-asymptotic theory of random matrices: Extreme singular values
    • In, MR2827856
    • Rudelson, M. and Vershynin, R. Non-asymptotic theory of random matrices: Extreme singular values. In International Congress of Mathematics, 2010. MR2827856
    • (2010) International Congress of Mathematics
    • Rudelson, M.1    Vershynin, R.2
  • 39
    • 84877881209 scopus 로고    scopus 로고
    • Reconstruction from anisotropic random measurements
    • MR3061256
    • Rudelson, M. and Zhou, S. Reconstruction from anisotropic random measurements. IEEE Transactions on Information Theory, 59:3434-3447, 2013. MR3061256
    • (2013) IEEE Transactions on Information Theory , vol.59 , pp. 3434-3447
    • Rudelson, M.1    Zhou, S.2
  • 46
    • 84869449202 scopus 로고    scopus 로고
    • Scaled sparse linear regression
    • MR2999166
    • Sun, T. and Zhang, C.-H. Scaled sparse linear regression. Biometrika, 99:879-898, 2012. MR2999166
    • (2012) Biometrika , vol.99 , pp. 879-898
    • Sun, T.1    Zhang, C.-H.2
  • 47
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and variable selection via the lasso
    • MR1379242
    • Tibshirani, R. Regression shrinkage and variable selection via the lasso. Journal of the Royal Statistical Society Series B, 58:671-686, 1996. MR1379242
    • (1996) Journal of the Royal Statistical Society Series B , vol.58 , pp. 671-686
    • Tibshirani, R.1
  • 48
    • 79955040218 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso: A retrospective (with discussion)
    • MR2815776
    • Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective (with discussion). Journal of the Royal Statistical Society Series B, 73:273-282, 2011. MR2815776
    • (2011) Journal of the Royal Statistical Society Series B , vol.73 , pp. 273-282
    • Tibshirani, R.1
  • 49
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • MR2097044
    • Tropp, J. Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 50:2231-2242, 2004. MR2097044
    • (2004) IEEE Transactions on Information Theory , vol.50 , pp. 2231-2242
    • Tropp, J.1
  • 50
    • 84892385551 scopus 로고    scopus 로고
    • Discussion of 'Stability Section' by N. Meinshausen and P. Bühlmann
    • Tsybakov, A. Discussion of 'Stability Section' by N. Meinshausen and P. Bühlmann. Journal of the Royal Statistical Society Series B, 72:467, 2010.
    • (2010) Journal of the Royal Statistical Society Series B , vol.72 , pp. 467
    • Tsybakov, A.1
  • 51
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the lasso
    • MR2396809
    • van de Geer, S. High-dimensional generalized linear models and the lasso. The Annals of Statistics, 36:614-645, 2008. MR2396809
    • (2008) The Annals of Statistics , vol.36 , pp. 614-645
    • van de Geer, S.1
  • 52
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the lasso
    • MR2576316
    • van de Geer, S. and Bühlmann, P. On the conditions used to prove oracle results for the lasso. The Electronic Journal of Statistics, 3:1360-1392, 2009. MR2576316
    • (2009) The Electronic Journal of Statistics , vol.3 , pp. 1360-1392
    • van de Geer, S.1    Bühlmann, P.2
  • 53
    • 84893450986 scopus 로고    scopus 로고
    • From Probability to Statistics and Back: High-Dimensional Models and Processes. A Festschrift in Honor of Jon Wellner, chapter 'The lasso, correlated design, and improved oracle inequalities'
    • van de Geer, S. and Lederer, J. From Probability to Statistics and Back: High-Dimensional Models and Processes. A Festschrift in Honor of Jon Wellner, chapter 'The lasso, correlated design, and improved oracle inequalities'. IMS Collections. 2012.
    • (2012) IMS Collections
    • van de Geer, S.1    Lederer, J.2
  • 54
  • 56
    • 79951612386 scopus 로고    scopus 로고
    • A unique nonnegative solution to an undetermined system: From vectors to matrices
    • MR2797714
    • Wang, M., Xu, W., and Tang, A. A unique nonnegative solution to an undetermined system: From vectors to matrices. IEEE Transactions on Signal Processing, 59:1007-1016, 2011. MR2797714
    • (2011) IEEE Transactions on Signal Processing , vol.59 , pp. 1007-1016
    • Wang, M.1    Xu, W.2    Tang, A.3
  • 57
    • 0000623082 scopus 로고
    • A problem in geometric probability
    • MR0146858
    • Wendel, J. G. A problem in geometric probability. Mathematics Scan-dinavia, 11:109-111, 1962. MR0146858
    • (1962) Mathematics Scan-dinavia , vol.11 , pp. 109-111
    • Wendel, J.G.1
  • 58
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the lasso selection in high-dimensional linear regression
    • MR2435448
    • Zhang, C.-H. and Huang, J. The sparsity and bias of the lasso selection in high-dimensional linear regression. The Annals of Statistics, 36:1567-1594, 2008. MR2435448
    • (2008) The Annals of Statistics , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 59
    • 64149088421 scopus 로고    scopus 로고
    • On the consistency of feature selection using greedy least squares regression
    • MR2491749
    • Zhang, T. On the consistency of feature selection using greedy least squares regression. Journal of Machine Learning Research, 10:555-568, 2009. MR2491749
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 555-568
    • Zhang, T.1
  • 60
    • 69049086702 scopus 로고    scopus 로고
    • 1 regularization
    • MR2543687
    • 1 regularization. The Annals of Statistics, 37:2109-2144, 2009. MR2543687
    • (2009) The Annals of Statistics , vol.37 , pp. 2109-2144
    • Zhang, T.1
  • 61
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of the lasso
    • MR2274449
    • Zhao, P. and Yu, B. On model selection consistency of the lasso. Journal of Machine Learning Research, 7:2541-2567, 2006. MR2274449
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2567
    • Zhao, P.1    Yu, B.2
  • 64
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • MR2279469
    • Zou, H. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101:1418-1429, 2006. MR2279469
    • (2006) Journal of the American Statistical Association , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.