메뉴 건너뛰기




Volumn , Issue , 2006, Pages 205-225

Hyperspectral Data Representation

Author keywords

Candidate approaches; Hyperspectral data representation; Simple qualitative examination

Indexed keywords


EID: 84877923586     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9780470124628.ch8     Document Type: Chapter
Times cited : (4)

References (20)
  • 1
    • 85040138582 scopus 로고
    • Remote Sensing: The Quantitative Approach
    • McGraw-Hill, New York
    • P. H. Swain and S. M. Davis, Remote Sensing: The Quantitative Approach, McGraw-Hill, New York, 1978.
    • (1978)
    • Swain, P.H.1    Davis, S.M.2
  • 2
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • J. A. Benediktsson, P. H. Swain, and O. K. Ersoy, Neural network approaches versus statistical methods in classification of multisource remote sensing data, IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-28, pp. 540-552, 1990.
    • (1990) IEEE Transactions on Geoscience and Remote Sensing , vol.GE-28 , pp. 540-552
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 4
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • G. F. Hughes, On the mean accuracy of statistical pattern recognizers, IEEE Transactions on Information Theory, Vol. IT-14, 56-63, 1968.
    • (1968) IEEE Transactions on Information Theory , vol.IT-14 , pp. 56-63
    • Hughes, G.F.1
  • 5
    • 0003922190 scopus 로고    scopus 로고
    • Pattern Classification
    • 2nd edition, JohnWiley & Sons, New York
    • R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd edition, JohnWiley & Sons, New York, 2001.
    • (2001)
    • Duda, R.O.1    Hart, P.E.2    Stork, D.G.3
  • 7
    • 85158970719 scopus 로고    scopus 로고
    • Remote Sensing Digital Image Analysis
    • 3rd edition, Springer, Berlin
    • J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis, 3rd edition, Springer, Berlin, 1999.
    • (1999)
    • Richards, J.A.1    Jia, X.2
  • 8
    • 0016451017 scopus 로고
    • Computer-aided analysis of Landsat-1 MSS data: A comparison of three approaches including a modified clustering approach
    • Proceedings of Symposium on Machine Processing of Remotely Sensed Data, LARS/Purdue University, West Lafayette, IN, June 3-5
    • M. D. Fleming, J. S. Berkebile, and R. M. Hoffer, Computer-aided analysis of Landsat-1 MSS data: A comparison of three approaches including a modified clustering approach, Proceedings of Symposium on Machine Processing of Remotely Sensed Data, LARS/Purdue University, West Lafayette, IN, pp. 54-61, June 3-5, 1975.
    • (1975) , pp. 54-61
    • Fleming, M.D.1    Berkebile, J.S.2    Hoffer, R.M.3
  • 10
    • 84889802925 scopus 로고    scopus 로고
    • Is there a best classifier? Image and Signal Processing for Remote Sensing XI
    • SPIE International Symposium on Remote Sensing Europe 2005, Brugge, Belgium, September 19-22
    • J. A. Richards, Is there a best classifier? Image and Signal Processing for Remote Sensing XI, SPIE International Symposium on Remote Sensing Europe 2005, Brugge, Belgium, September 19-22, 2005.
    • (2005)
    • Richards, J.A.1
  • 11
  • 13
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • F. Melgani and L. Bruzzone, Classification of hyperspectral remote sensing images with support vector machines, IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, pp. 1778-1790, 2004.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 16
    • 0141934861 scopus 로고    scopus 로고
    • Signal Theory Methods in Multispectral Remote Sensing
    • JohnWiley & Sons, Hoboken, NJ
    • D. A. Landgrebe, Signal Theory Methods in Multispectral Remote Sensing, JohnWiley & Sons, Hoboken, NJ, 2003.
    • (2003)
    • Landgrebe, D.A.1
  • 17
    • 0036875217 scopus 로고    scopus 로고
    • A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction
    • B-C. Kuo and D. A. Landgrebe, A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction, IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, pp. 2486-2494, 2002.
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , pp. 2486-2494
    • Kuo, B.-C.1    Landgrebe, D.A.2
  • 18
    • 84889778447 scopus 로고    scopus 로고
    • Classification of Hyperspectral Data Sets
    • Ph.D. thesis, The University of New South Wales, Kensington, Australia
    • X. Jia, Classification of Hyperspectral Data Sets, Ph.D. thesis, The University of New South Wales, Kensington, Australia, 1996.
    • (1996)
    • Jia, X.1
  • 19
    • 0028403418 scopus 로고
    • Efficient maximum likelihood classification for imaging spectrometer data sets
    • X. Jia and J. A. Richards, Efficient maximum likelihood classification for imaging spectrometer data sets, IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, pp. 274-281, 1994.
    • (1994) IEEE Transactions on Geoscience and Remote Sensing , vol.32 , pp. 274-281
    • Jia, X.1    Richards, J.A.2
  • 20
    • 26944473196 scopus 로고    scopus 로고
    • On the relationship between sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification
    • T. G. Van Neil, T. R. McVicar, and B. Datt, On the relationship between sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification, Remote Sensing of Environment, Vol. 98, pp. 468-480, 2005.
    • (2005) Remote Sensing of Environment , vol.98 , pp. 468-480
    • Van Neil, T.G.1    McVicar, T.R.2    Datt, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.