메뉴 건너뛰기




Volumn 7, Issue 6, 2014, Pages 2547-2561

Comparison of feature reduction algorithms for classifying tree species with hyperspectral data on three central european test sites

Author keywords

Feature reduction; feature selection; forestry; hyperspectral remote sensing; random forest; support vector machines (SVM); tree species classification

Indexed keywords

ALGORITHMS; BIODIVERSITY; CLASSIFICATION (OF INFORMATION); DECISION TREES; FEATURE EXTRACTION; FORESTRY; GENETIC ALGORITHMS; LEAST SQUARES APPROXIMATIONS; WATER ABSORPTION;

EID: 84905918062     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2014.2329390     Document Type: Article
Times cited : (158)

References (89)
  • 1
    • 0344074641 scopus 로고    scopus 로고
    • Conifer species recognition: An exploratory analysis of in situ hyperspectral data
    • DOI 10.1016/S0034-4257(97)00094-1, PII S0034425797000941
    • P. Gong, R. Pu, and B. Zu, "Conifer species recognition: An exploratory analysis of in situ hyperspectal data," Remote Sens. Environ., vol. 62, no. 2, pp. 189-200, 1997. (Pubitemid 28091206)
    • (1997) Remote Sensing of Environment , vol.62 , Issue.2 , pp. 189-200
    • Gong, P.1    Ruilianp, P.2    Bin, Y.3
  • 2
    • 77956884950 scopus 로고    scopus 로고
    • Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada
    • T. Jones, N. C. Coops, and T. Sharma, "Assessing the utility of airborne hyperspectral and LiDAR data for species distribution mapping in the coastal Pacific Northwest, Canada," Remote Sens. Environ., vol. 114, no. 12, pp. 2841-2852, 2010.
    • (2010) Remote Sens. Environ. , vol.114 , Issue.12 , pp. 2841-2852
    • Jones, T.1    Coops, N.C.2    Sharma, T.3
  • 5
    • 57649121781 scopus 로고    scopus 로고
    • Approaches to utilising Quickbird-data for the monitoring of NATURA 2000 habitats
    • M. Förster, A. Frick, H. Walentowski, and B. Kleinschmit, "Approaches to utilising Quickbird-data for the monitoring of NATURA 2000 habitats," Commun. Ecol., vol. 9, pp. 155-168, 2008.
    • (2008) Commun. Ecol. , vol.9 , pp. 155-168
    • Förster, M.1    Frick, A.2    Walentowski, H.3    Kleinschmit, B.4
  • 6
    • 77952881448 scopus 로고    scopus 로고
    • Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review
    • E. Adam, O. Mutanga, and D. Rugege, "Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review," Wetlands Ecol. Manag., vol. 18, no. 3, pp. 281-296, 2010.
    • (2010) Wetlands Ecol. Manag. , vol.18 , Issue.3 , pp. 281-296
    • Adam, E.1    Mutanga, O.2    Rugege, D.3
  • 8
    • 2942528742 scopus 로고    scopus 로고
    • Using imaging spectroscopy to study ecosystem processes and properties
    • S. L. Ustin, D. A. Roberts, J. A.Gamon, G. P. Asner, and R. O. Green, "Using image spectroscopy to study ecosystem processes and properties," Bioscience, vol. 54, no. 6, pp. 523-534, 2004. (Pubitemid 38751838)
    • (2004) BioScience , vol.54 , Issue.6 , pp. 523-534
    • Ustin, S.L.1    Roberts, D.A.2    Gamon, J.A.3    Asner, G.P.4    Green, R.O.5
  • 9
    • 33745092487 scopus 로고    scopus 로고
    • Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods
    • DOI 10.1080/01431160500285076, PII U58538231X25
    • H. Buddenbaum, M. Schlerf, and J. Hill, "Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods," Int. J. Remote Sens., vol. 26, no. 24, pp. 5453-5465, 2005. (Pubitemid 43878391)
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.24 , pp. 5453-5465
    • Buddenbaum, H.1    Schlerf, M.2    Hill, J.3
  • 10
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • May
    • M. Pal and G. M. Foody, "Feature selection for classification of hyperspectral data by SVM," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 5, pp. 2297-2307, May 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.5 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 11
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan.
    • G. F. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. 14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 12
    • 0035124583 scopus 로고    scopus 로고
    • A comparison of multispectral and multitemporal information in high spatial resolution imagery for classification of individual tree species in a temperate hardwood forest
    • DOI 10.1016/S0034-4257(00)00159-0, PII S0034425700001590
    • T. Key, T. A. Warner, J. B. McGraw, and M. A. Fajvan, "A comparison of multispectral and multitemporal information in high spatial resolution imagery for classification of individual tree species in a temperate hardwood forest," Remote Sens. Environ., vol. 75, no. 1, pp. 100-112, 2001. (Pubitemid 32139670)
    • (2001) Remote Sensing of Environment , vol.75 , Issue.1 , pp. 100-112
    • Key, T.1    Warner, T.A.2    McGraw, J.B.3    Fajvan, M.A.4
  • 13
    • 21444447781 scopus 로고    scopus 로고
    • Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales
    • DOI 10.1016/j.rse.2005.03.009, PII S0034425705001082
    • M. L. Clark, D. A. Roberts, and D. B. Clark, "Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales," Remote Sens. Environ., vol. 96, no. 3-4, pp. 375-398, 2005. (Pubitemid 40912438)
    • (2005) Remote Sensing of Environment , vol.96 , Issue.3-4 , pp. 375-398
    • Clark, M.L.1    Roberts, D.A.2    Clark, D.B.3
  • 14
    • 67650264362 scopus 로고    scopus 로고
    • Distinguishing mangrove species with laboratory measurements of hyperspectral leaf reflectance
    • L. Wang and P. Sousa, "Distinguishing mangrove species with laboratory measurements of hyperspectral leaf reflectance," Int. J. Remote Sens., vol. 30, no. 5, pp. 1267-1281, 2009.
    • (2009) Int. J. Remote Sens. , vol.30 , Issue.5 , pp. 1267-1281
    • Wang, L.1    Sousa, P.2
  • 15
    • 33947429082 scopus 로고    scopus 로고
    • Tree species mapping with Airborne hyper-spectral MIVIS data: The Ticino Park study case
    • DOI 10.1080/01431160600928542, PII 773283327
    • M. Boschetti, L. Boschetti, S. Oliveri, L. Casati, and I. Canova, "Tree species mapping with airborne hyper-spectral MIVIS data: The Ticino Park study case," Int. J. Remote Sens., vol. 28, no. 6, pp. 1251-1261, 2007. (Pubitemid 46455018)
    • (2007) International Journal of Remote Sensing , vol.28 , Issue.6 , pp. 1251-1261
    • Boschetti, M.1    Boschetti, L.2    Oliveri, S.3    Casati, L.4    Canova, I.5
  • 16
    • 67049144634 scopus 로고    scopus 로고
    • Evaluating hyperspectral imagery for mapping black mangrove along the south Texas Gulf Coast
    • C. Yang, J. H. Everitt, R. S. Fletcher, R. R. Jensen, and P. W. Mausel, "Evaluating hyperspectral imagery for mapping black mangrove along the south Texas Gulf Coast," Photogramm. Eng. Remote Sens., vol. 75, no. 4, pp. 425-435, 2009.
    • (2009) Photogramm. Eng. Remote Sens. , vol.75 , Issue.4 , pp. 425-435
    • Yang, C.1    Everitt, J.H.2    Fletcher, R.S.3    Jensen, R.R.4    Mausel, P.W.5
  • 18
    • 0034544006 scopus 로고    scopus 로고
    • Recognition of Eucalyptus forest species using hyperspectral reflectance data
    • B. Datt, "Recognition of eucalyptus forest species using hyperspectral reflectance data," in T. I. Stein (Ed.), Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Honolulu, HI, USA, Jul. 24-28, 2000, vol. 4, pp. 1405-1407. (Pubitemid 32019269)
    • (2000) International Geoscience and Remote Sensing Symposium (IGARSS) , vol.4 , pp. 1405-1407
    • Datt Bisun1
  • 19
    • 34249939968 scopus 로고    scopus 로고
    • Band selection using hyperspectral data of subtropical tree species
    • T. Fung, H. F. Y. Ma, and W. L. Siu, "Band selection using hyperspectral data of subtropical tree species," Geocarto Int., vol. 18, no. 4, pp. 3-11, 2003.
    • (2003) Geocarto Int. , vol.18 , Issue.4 , pp. 3-11
    • Fung, T.1    Ma, H.F.Y.2    Siu, W.L.3
  • 20
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of random forest, and Adaboost tree-based ensemble classification, and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • J. C.-W. Chan and D. Paelinckx. "Evaluation of random forest, and Adaboost tree-based ensemble classification, and spectral band selection for ecotope mapping using airborne hyperspectral imagery," Remote Sens. Environ., vol. 112, no. 6, pp. 2999-3011, 2008.
    • (2008) Remote Sens. Environ. , vol.112 , Issue.6 , pp. 2999-3011
    • Chan, J.C.-W.1    Paelinckx, D.2
  • 21
    • 84897585667 scopus 로고    scopus 로고
    • A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales
    • A. Ghosh, F. E. Fassnacht, P. K. Joshi, and B. Koch, "A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales," Int. J. Appl. Earth Observ. Geoinf., vol. 26, pp. 49-63, 2014.
    • (2014) Int. J. Appl. Earth Observ. Geoinf. , vol.26 , pp. 49-63
    • Ghosh, A.1    Fassnacht, F.E.2    Joshi, P.K.3    Koch, B.4
  • 22
    • 80052354356 scopus 로고    scopus 로고
    • Fusion of airborne hyperspectral and LiDAR data for tree species classification in the temperate forest of Northeast China
    • Jun. 24-26
    • L. Liu, Y. Pang, W. Fan, Z. Li, and M. Li, "Fusion of airborne hyperspectral and LiDAR data for tree species classification in the temperate forest of Northeast China," in Proc. 19th Int. Conf. Geoinformat., Shanghai, China, Jun. 24-26, 2011, pp. 1-5.
    • (2011) Proc. 19th Int. Conf. Geoinformat., Shanghai, China , pp. 1-5
    • Liu, L.1    Pang, Y.2    Fan, W.3    Li, Z.4    Li, M.5
  • 23
    • 34648828198 scopus 로고    scopus 로고
    • Object-oriented classification of LiDARfused hyperspectral imagery for tree species identification in an Urban Environment
    • Apr. 11-13
    • R. Sugumaran and M. Voss, "Object-oriented classification of LiDARfused hyperspectral imagery for tree species identification in an Urban Environment," in Proc. Urban Remote Sens. Joint Event, Paris, France, Apr. 11-13, 2007, pp. 1-6.
    • (2007) Proc. Urban Remote Sens. Joint Event, Paris, France , pp. 1-6
    • Sugumaran, R.1    Voss, M.2
  • 24
    • 70349172947 scopus 로고    scopus 로고
    • The role of spectral resolution, and classifier complexity in the analysis of hyperspectral images of forest areas
    • M. Dalponte, L. Bruzzone, L. Vescovo, and D. Gianelle, "The role of spectral resolution, and classifier complexity in the analysis of hyperspectral images of forest areas," Remote Sens. Environ., vol. 113, no. 11, pp. 2345-2355, 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.11 , pp. 2345-2355
    • Dalponte, M.1    Bruzzone, L.2    Vescovo, L.3    Gianelle, D.4
  • 25
    • 84874785808 scopus 로고    scopus 로고
    • Commercial tree species discrimination using airborneAISA Eagle hyperspectral imagery and partial least squared discriminant analysis (PLS-DA) in KwaZulu-Natal South Africa
    • K. Y. Peerbhay, O. Mutanga, and R. Ismail, "Commercial tree species discrimination using airborneAISA Eagle hyperspectral imagery and partial least squared discriminant analysis (PLS-DA) in KwaZulu-Natal, South Africa," ISPRS J. Photogramm. Remote Sens., vol. 79, pp. 19-28, 2013.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.79 , pp. 19-28
    • Peerbhay, K.Y.1    Mutanga, O.2    Ismail, R.3
  • 26
    • 84872818638 scopus 로고    scopus 로고
    • An angular vegetation index for imaging spectroscopy data-Preliminary results on forest damage detection in the Bavarian National Park, Germany
    • F. E. Fassnacht, H. Latifi, and B. Koch, "An angular vegetation index for imaging spectroscopy data-Preliminary results on forest damage detection in the Bavarian National Park, Germany," Int. J. Appl. Earth Observ. Geoinf., vol. 19, pp. 308-321, 2012.
    • (2012) Int. J. Appl. Earth Observ. Geoinf. , vol.19 , pp. 308-321
    • Fassnacht, F.E.1    Latifi, H.2    Koch, B.3
  • 27
    • 77957768057 scopus 로고    scopus 로고
    • Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Application of multiple optical/LiDAR-derived predictors
    • H. Latifi, A. Nothdurft, and B. Koch, "Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Application of multiple optical/LiDAR-derived predictors," Forestry, vol. 83, no. 4, pp. 395-407, 2010.
    • (2010) Forestry , vol.83 , Issue.4 , pp. 395-407
    • Latifi, H.1    Nothdurft, A.2    Koch, B.3
  • 28
    • 84857753065 scopus 로고    scopus 로고
    • Airborne hyperspectral and LiDAR data fusion to describe forest structure
    • H. Latifi, F. Fassnacht, and B. Koch, "Airborne hyperspectral and LiDAR data fusion to describe forest structure," Remote Sens. Environ., vol. 121, pp. 10-25, 2012.
    • (2012) Remote Sens. Environ. , vol.121 , pp. 10-25
    • Latifi, H.1    Fassnacht, F.2    Koch, B.3
  • 29
    • 84859644121 scopus 로고    scopus 로고
    • Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a
    • Random Forest data mining environment
    • L. Naidoo, M. A. Cho, R. Mathieu, and G. Asner, "Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment," ISPRS J. Photogramm. Remote Sens., vol. 69, pp. 167-179, 2012.
    • (2012) ISPRS J. Photogramm. Remote Sens. , vol.69 , pp. 167-179
    • Naidoo, L.1    Cho, M.A.2    Mathieu, R.3    Asner, G.4
  • 31
    • 84884919541 scopus 로고    scopus 로고
    • Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data
    • M. Dalponte, H. O. ∅rka, L. T. Ene, T. Gobakken, and E. Næsset, "Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data," Remote Sens. Environ., vol. 140, pp. 306-317, 2014.
    • (2014) Remote Sens. Environ. , vol.140 , pp. 306-317
    • Dalponte, M.1    Erka, H.O.2    Ene, L.T.3    Gobakken, T.4    Næsset, E.5
  • 32
    • 84878355763 scopus 로고    scopus 로고
    • Hyperspectral discrimination of tree species with different classifications using single-and multiple-endmember
    • A. Ghiyamat, H. Z. M. Shafri, G. A. Mahdiraji, A. R. M. Shariff, and S. Mansor, "Hyperspectral discrimination of tree species with different classifications using single-and multiple-endmember," Int. J. Appl. Earth Observ. Geoinf., vol. 23, pp. 177-191, 2013.
    • (2013) Int. J. Appl. Earth Observ. Geoinf. , vol.23 , pp. 177-191
    • Ghiyamat, A.1    Shafri, H.Z.M.2    Mahdiraji, G.A.3    Shariff, A.R.M.4    Mansor, S.5
  • 33
    • 84888060130 scopus 로고    scopus 로고
    • Estimation of seasonal leaf area index in an alluvial forest using high resolution satellitebased vegetation indices
    • A. Tillack, A. Clasen, B. Kleinschmit, and M. Förster, "Estimation of seasonal leaf area index in an alluvial forest using high resolution satellitebased vegetation indices," Remote Sens. Environ., vol. 141, pp. 52-63, 2014.
    • (2014) Remote Sens. Environ. , vol.141 , pp. 52-63
    • Tillack, A.1    Clasen, A.2    Kleinschmit, B.3    Förster, M.4
  • 34
    • 84872334369 scopus 로고    scopus 로고
    • Measuring water and chlorophyll content on the leaf and canopy scale
    • H. Buddenbaum, P. Pueschel, M. Stellmes, W. Werner, and J. Hill, "Measuring water and chlorophyll content on the leaf and canopy scale," EARSeL eProc., vol. 10, no. 1, pp. 66-72, 2011.
    • (2011) EARSeL EProc. , vol.10 , Issue.1 , pp. 66-72
    • Buddenbaum, H.1    Pueschel, P.2    Stellmes, M.3    Werner, W.4    Hill, J.5
  • 35
    • 0033102275 scopus 로고    scopus 로고
    • Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression
    • DOI 10.1016/S0034-4257(98)00084-4, PII S0034425798000844
    • R. F. Kokaly and R. N. Clark, "Spectroscopic determination of leaf biochemistry using band-depths analysis of absorption features and stepwise linear regression," Remote Sens. Environ., vol. 67, no. 3, pp. 267-287, 1999. (Pubitemid 29360732)
    • (1999) Remote Sensing of Environment , vol.67 , Issue.3 , pp. 267-287
    • Kokaly, R.F.1    Clark, R.N.2
  • 36
    • 33847670560 scopus 로고    scopus 로고
    • Hyperspectral remote sensing of plant pigments
    • G. A. Blackburn, "Hyperspectral remote sensing of plant pigments," J. Exp. Bot., vol. 58, no. 4, pp. 855-886, 2007.
    • (2007) J. Exp. Bot. , vol.58 , Issue.4 , pp. 855-886
    • Blackburn, G.A.1
  • 38
    • 0042553279 scopus 로고
    • Smoothing and differentiation of data by simplified least-square procedures
    • A. Savitzky and M. J. E. Golay, "Smoothing and differentiation of data by simplified least-square procedures," Anal. Chem., vol. 36, no. 8, pp. 1627-1639, 1964.
    • (1964) Anal. Chem. , vol.36 , Issue.8 , pp. 1627-1639
    • Savitzky, A.1    Golay, M.J.E.2
  • 39
    • 45849094393 scopus 로고    scopus 로고
    • Estimating foliar biochemistry from hyperspectral data in mixed forest canopy
    • S. Huber, M. Kneubühler, A. Psomas, K. Itten, and N. E. Zimmermann, "Estimating foliar biochemistry from hyperspectral data in mixed forest canopy," Forest Ecol. Mange., vol. 256, no. 3, pp. 491-501, 2008.
    • (2008) Forest Ecol. Mange. , vol.256 , Issue.3 , pp. 491-501
    • Huber, S.1    Kneubühler, M.2    Psomas, A.3    Itten, K.4    Zimmermann, N.E.5
  • 40
    • 84874373575 scopus 로고    scopus 로고
    • Feature selection methods and algorithms
    • L. Ladha and T. Deepa, "Feature selection methods and algorithms," Int. J. Comput. Sci. Eng., vol. 3, no. 5, pp. 1787-1797, 2011.
    • (2011) Int. J. Comput. Sci. Eng. , vol.3 , Issue.5 , pp. 1787-1797
    • Ladha, L.1    Deepa, T.2
  • 41
    • 84938967218 scopus 로고    scopus 로고
    • Filter methods
    • New York, NY, USA: Springer
    • M. Kuhn and K. Johnson, "Filter methods," in Applied Predictive Modeling. New York, NY, USA: Springer, 2013, pp. 499-500.
    • (2013) Applied Predictive Modeling , pp. 499-500
    • Kuhn, M.1    Johnson, K.2
  • 42
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 46
    • 33646121277 scopus 로고    scopus 로고
    • GALGO: An R package for multivariate variable selection using genetic algorithms
    • V. Trevino and F. Falciani, "GALGO: An R package for multivariate variable selection using genetic algorithms," Bioinformatics, vol. 22, pp. 1154-1156, 2006.
    • (2006) Bioinformatics , vol.22 , pp. 1154-1156
    • Trevino, V.1    Falciani, F.2
  • 47
    • 84855199947 scopus 로고    scopus 로고
    • R Core Team, Vienna, Austria: R Foundation for Statistical Computing [Online]. Available ISBN: 3-900051-07-0
    • R Core Team, R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2012 [Online]. Available: http://www.R-project.org/, ISBN: 3-900051-07-0.
    • (2012) A Language and Environment for Statistical Computing
  • 48
    • 70349174319 scopus 로고    scopus 로고
    • The influence of urban structures on impervious surface maps from airborne hyperspectral data
    • S. van der Linden and P. Hostert, "The influence of urban structures on impervious surface maps from airborne hyperspectral data," Remote Sens. Environ., vol. 113, no. 11, pp. 2298-2305, 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.11 , pp. 2298-2305
    • Linden Der S.Van1    Hostert, P.2
  • 49
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi and G. H. John, "Wrappers for feature subset selection," Artif. Intell., vol. 97, pp. 273-324, 1997. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 51
    • 84865407521 scopus 로고    scopus 로고
    • A review of variable selection methods in partial least squares regression
    • T. Mehmood, K. H. Liland, L. Snipen, and S. Sæbø, "A review of variable selection methods in partial least squares regression," Chemom. Intell. Lab. Syst., vol. 118, pp. 62-69, 2012.
    • (2012) Chemom. Intell. Lab. Syst. , vol.118 , pp. 62-69
    • Mehmood, T.1    Liland, K.H.2    Snipen, L.3    Sæbø, S.4
  • 52
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • M. Barker and W. Rayens, "Partial least squares for discrimination," J. Chemom., vol. 17, no. 3, pp. 166-173, 2003.
    • (2003) J. Chemom. , vol.17 , Issue.3 , pp. 166-173
    • Barker, M.1    Rayens, W.2
  • 53
    • 0036740519 scopus 로고    scopus 로고
    • Multi-class cancer classification via partial least squares with gene expression profiles
    • D. Nguyen and D. Rocke, "Multi-class cancer classification via partial least squares with gene expression profiles," Bioinformatics, vol. 18, no. 9, pp. 1216-1226, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.9 , pp. 1216-1226
    • Nguyen, D.1    Rocke, D.2
  • 54
    • 77950530973 scopus 로고    scopus 로고
    • Sparse partial least squares classification for high dimensionaldata
    • Article no. 17
    • D. Chung and S. Keles, "Sparse partial least squares classification for high dimensionaldata,"Stat. Appl. Genet. Mol. Biol.,vol.9, no.1, 2010, Article no. 17.
    • (2010) Stat. Appl. Genet. Mol. Biol. , vol.9 , Issue.1
    • Chung, D.1    Keles, S.2
  • 55
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the lasso," J. Roy. Stat. Soc. B, vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. Roy. Stat. Soc. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 56
    • 20444448822 scopus 로고    scopus 로고
    • PLS dimension reduction for classification with microarray data
    • Article no. 33
    • A.-L. Boulesteix, "PLS dimension reduction for classification with microarray data," Stat. Appl. Genet. Mol. Biol., vol. 3, 2004, Article no. 33.
    • (2004) Stat. Appl. Genet. Mol. Biol. , vol.3
    • Boulesteix, A.-L.1
  • 57
    • 74049093630 scopus 로고    scopus 로고
    • Sparse partial least squares regression for simultaneous dimension reduction and variable selection
    • H. Chun and S. Kele\+, "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," J. Roy. Stat. Soc. B (Stat. Methodol.), vol. 72, no. 1, pp. 3-25, 2010.
    • (2010) J. Roy. Stat. Soc. B (Stat. Methodol.) , vol.72 , Issue.1 , pp. 3-25
    • Chun, H.1    Kele, S.2
  • 58
    • 84886540048 scopus 로고    scopus 로고
    • SPLS: Sparse partial least squares (SPLS) regression and classification
    • [Online]. Available
    • D. Chung, H. Chun, and S. Keles. (2012). "SPLS: Sparse partial least squares (SPLS) regression and classification," R Package Version 2.1-2 [Online]. Available: http://CRAN.R-project.org/package=spls
    • (2012) R Package Version 2.1-2
    • Chung, D.1    Chun, H.2    Keles, S.3
  • 59
    • 0008641556 scopus 로고
    • Wavelength selection method for multicomponent spectrophotometric determinations using partial least squares
    • A. Frenich et al., "Wavelength selection method for multicomponent spectrophotometric determinations using partial least squares," Analyst, vol. 120, pp. 2787-2792, 1995.
    • (1995) Analyst , vol.120 , pp. 2787-2792
    • Frenich, A.1
  • 60
    • 0023854011 scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • Jan.
    • R. O. Green, M. L. Eastwood, and O. Williams, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65-74, Jan. 1988.
    • (1988) IEEE Trans. Geosci. Remote Sens. , vol.26 , Issue.1 , pp. 65-74
    • Green, R.O.1    Eastwood, M.L.2    Williams, O.3
  • 62
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • Aug. 20-25
    • R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection," in Proc. 14th Int. joint Conf. Artif. Intell., Montreal, Canada, Aug. 20-25, 1995, vol. 2, pp. 1137-1143.
    • (1995) Proc. 14th Int. Joint Conf. Artif. Intell., Montreal, Canada , vol.2 , pp. 1137-1143
    • Kohavi, R.1
  • 63
    • 84887847047 scopus 로고    scopus 로고
    • [Online]. Available
    • M. Kuhn. (2012). The Caret Package [Online]. Available: http://cran.r-project.org/web/packages/caret/caret.pdf
    • (2012) The Caret Package
    • Kuhn, M.1
  • 64
    • 1242322063 scopus 로고    scopus 로고
    • Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests
    • DOI 10.1016/j.rse.2003.11.018
    • P. S. Thenkabail, E. A. Enclona, M. S. Ashton, C. Legg, and M. J. De Dieu, "Hyperion, IKONOS, ALI, and sensors in the study of African reinorests," Remote Sens. Environ., vol. 90, pp. 23-43, 2004. (Pubitemid 38225344)
    • (2004) Remote Sensing of Environment , vol.90 , Issue.1 , pp. 23-43
    • Thenkabail, P.S.1    Enclona, E.A.2    Ashton, M.S.3    Legg, C.4    De Dieu, M.J.5
  • 65
    • 84877828498 scopus 로고    scopus 로고
    • Mann-Whitney U test (Wilcoxon Rank-Sum test)
    • N. Salkind, Ed. Newbury Park, CA, USA: SAGE
    • S. Sawilowsky, "Mann-Whitney U test (Wilcoxon Rank-Sum test)," in Encyclopedia of Measurement and Statistics, N. Salkind, Ed. Newbury Park, CA, USA: SAGE, 2007, pp. 566-568.
    • (2007) Encyclopedia of Measurement and Statistics , pp. 566-568
    • Sawilowsky, S.1
  • 66
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • A. Liaw and M. Wiener, "Classification and regression by random forest," R News, vol. 2, no. 3, pp. 18-22, 2002.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 68
    • 80053285993 scopus 로고    scopus 로고
    • Raster: Geographic analysis and modeling with raster data
    • [Online]. Available
    • R. J. Hijmans and J. van Etten. (2012). "Raster: Geographic analysis and modeling with raster data," R Package Version 2.0-12 [Online]. Available: http://CRAN.R-project.org/package=raster
    • (2012) R Package Version 2.0-12
    • Hijmans, R.J.1    Van, J.Etten.2
  • 69
    • 84955453953 scopus 로고    scopus 로고
    • RGDAL: Bindings for the geospatial data abstraction library
    • [Online]. Available
    • T. H. Keitt, R. Bivand, E. Pebesma, and B. Rowlingson. (2012). RGDAL: Bindings for the geospatial data abstraction library, R Package Version 0.7-20 [Online]. Available: http://CRAN.R-project.org/package=rgdal
    • (2012) R Package Version 0.7-20
    • Keitt, T.H.1    Bivand, R.2    Pebesma, E.3    Rowlingson, B.4
  • 70
    • 56249113343 scopus 로고    scopus 로고
    • Building predictive models in R using caret package
    • M. Kuhn, "Building predictive models in R using caret package," J. Stat. Software, vol. 28, no. 5, pp. 1-26, 2008.
    • (2008) J. Stat. Software , vol.28 , Issue.5 , pp. 1-26
    • Kuhn, M.1
  • 71
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 72
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • DOI 10.1080/01431160110040323
    • C. Huang, L. S. Davis, and J. R. Townshend, "An assessment of support vector machines for land cover classification," Int. J. Remote Sens., vol. 23, no. 4, pp. 725-749, 2002. (Pubitemid 34119904)
    • (2002) International Journal of Remote Sensing , vol.23 , Issue.4 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 73
    • 84858015958 scopus 로고    scopus 로고
    • Testing therededge channel for improving land-use classifications based on high-resolution multi-spectral satellite data
    • C. Schuster, M. Förster,and B. Kleinschmit," Testing therededge channel for improving land-use classifications based on high-resolution multi-spectral satellite data," Int. J. Remote Sens., vol. 33, no. 17, pp. 5583-5599, 2012.
    • (2012) Int. J. Remote Sens. , vol.33 , Issue.17 , pp. 5583-5599
    • Schuster, C.1    Förster, M.2    Kleinschmit, B.3
  • 74
    • 44649165024 scopus 로고    scopus 로고
    • Statistical pattern recognition in remote sensing
    • C. H. Chen and P. G. P. Ho, "Statistical pattern recognition in remote sensing," Pattern Recognit., vol. 41, no. 9, pp. 2731-2741, 2008.
    • (2008) Pattern Recognit , vol.41 , Issue.9 , pp. 2731-2741
    • Chen, C.H.1    Ho, P.G.P.2
  • 75
    • 84864524799 scopus 로고    scopus 로고
    • Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation
    • J. Heinzel and B. Koch, "Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation," Int. J. Appl. Earth Observ. Geoinf., vol. 18, pp. 101-110, 2012.
    • (2012) Int. J. Appl. Earth Observ. Geoinf. , vol.18 , pp. 101-110
    • Heinzel, J.1    Koch, B.2
  • 76
    • 77953871614 scopus 로고    scopus 로고
    • Sensitivity of support vector machines to random feature selection in classification of hyperspectral data
    • Jul.
    • B. Waske, S. Van der Linden, J. A. Benediktsson, A. Rabe, and P. Hostert, "Sensitivity of support vector machines to random feature selection in classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2880-2889, Jul. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.7 , pp. 2880-2889
    • Waske, B.1    Linden Der S.Van2    Benediktsson, J.A.3    Rabe, A.4    Hostert, P.5
  • 77
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges, "A tutorial on support vector machines for pattern recognition," Data Min. Knowl. Discovery, vol. 2, pp. 121-167, 1998. (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 78
    • 84455200427 scopus 로고    scopus 로고
    • A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
    • D. C. Duro, S. E. Franklin, and M. G. Dube, "A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery," Remote Sens. Environ., vol. 118, pp. 259-272, 2012.
    • (2012) Remote Sens. Environ. , vol.118 , pp. 259-272
    • Duro, D.C.1    Franklin, S.E.2    Dube, M.G.3
  • 80
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 82
    • 84897586103 scopus 로고    scopus 로고
    • A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery
    • A. Ghosh and P. K. Joshi, "A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery," Int. J. Appl. Earth Observ. Geoinf., vol. 26, pp. 298-311, 2014.
    • (2014) Int. J. Appl. Earth Observ. Geoinf. , vol.26 , pp. 298-311
    • Ghosh, A.1    Joshi, P.K.2
  • 84
    • 84884476019 scopus 로고    scopus 로고
    • Random Forest classification of remote sensing data
    • C. H. Chen, Ed. Boca Raton, FL, USA: CRC Press
    • B. Waske, J. A. Benediktsson, and J. R. Sveinsson, "Random Forest classification of remote sensing data," in Signal and Image Processing for Remote Sensing, C. H. Chen, Ed. Boca Raton, FL, USA: CRC Press, 2012, pp. 365-374.
    • (2012) Signal and Image Processing for Remote Sensing , pp. 365-374
    • Waske, B.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 85
    • 26444567985 scopus 로고    scopus 로고
    • [Online]. Available: accessed on Oct. 21, 2013
    • L. Breiman and A. Cutler. (2007). Random forests-Classification Description [Online]. Available: http://www.stat.berkeley.edu/~breiman/ RandomForests/cc-home.htm, accessed on Oct. 21, 2013.
    • (2007) Random Forests-Classification Description
    • Breiman, L.1    Cutler, A.2
  • 87
    • 84882605980 scopus 로고    scopus 로고
    • Evaluation of simulated bands in airborne optical sensors for tree species identification
    • P. Pant et al., "Evaluation of simulated bands in airborne optical sensors for tree species identification," Remote Sens. Environ., vol.138, pp.27-37, 2013.
    • (2013) Remote Sens. Environ. , vol.138 , pp. 27-37
    • Pant, P.1
  • 88
    • 84887586391 scopus 로고    scopus 로고
    • Impact of spatial, spectral, and radiometric properties of multispectral imagery on glacier surface classification
    • A. Pope and W. G. Rees, "Impact of spatial, spectral, and radiometric properties of multispectral imagery on glacier surface classification," Remote Sens. Environ., vol. 141, pp. 1-13, 2014.
    • (2014) Remote Sens. Environ. , vol.141 , pp. 1-13
    • Pope, A.1    Rees, W.G.2
  • 89
    • 84860394701 scopus 로고    scopus 로고
    • A network of terrestrial environmental observatories in Germany
    • S. Zacharias et al., "A network of terrestrial environmental observatories in Germany," Vadose Zone J., vol. 10, pp. 955-973, 2011.
    • (2011) Vadose Zone J. , vol.10 , pp. 955-973
    • Zacharias, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.