메뉴 건너뛰기




Volumn 170, Issue , 2014, Pages 38-44

Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices

Author keywords

Heat shock proteins (HSPs); S. cerevisiae; Thermo tolerance; Thermo tolerant devices; Thermophiles

Indexed keywords

PROTEINS; STRAIN;

EID: 84905692148     PISSN: 09608524     EISSN: 18732976     Source Type: Journal    
DOI: 10.1016/j.biortech.2014.07.063     Document Type: Article
Times cited : (34)

References (34)
  • 1
    • 84855771386 scopus 로고    scopus 로고
    • Small heat-shock protein Hsp9 has dual functions in stress adaptation and stress-induced G2-M checkpoint regulation via Cdc25 inactivation in Schizosaccharomyces pombe
    • Ahn J., Won M., Choi J.H., Kyun M.L., Cho H.S., Park H.M., Kang C.M., Chung K.S. Small heat-shock protein Hsp9 has dual functions in stress adaptation and stress-induced G2-M checkpoint regulation via Cdc25 inactivation in Schizosaccharomyces pombe. Biochem. Biophys. Res. Commun. 2012, 417(1):613-618.
    • (2012) Biochem. Biophys. Res. Commun. , vol.417 , Issue.1 , pp. 613-618
    • Ahn, J.1    Won, M.2    Choi, J.H.3    Kyun, M.L.4    Cho, H.S.5    Park, H.M.6    Kang, C.M.7    Chung, K.S.8
  • 2
    • 84861123169 scopus 로고    scopus 로고
    • Dynamic model of temperature impact on cell viability and major product formation during fed-batch and continuous ethanolic fermentation in Saccharomyces cerevisiae
    • Amillastre E., Aceves-Lara C.A., Uribelarrea J.L., Alfenore S., Guillouet S.E. Dynamic model of temperature impact on cell viability and major product formation during fed-batch and continuous ethanolic fermentation in Saccharomyces cerevisiae. Bioresour. Technol. 2012, 117:242-250.
    • (2012) Bioresour. Technol. , vol.117 , pp. 242-250
    • Amillastre, E.1    Aceves-Lara, C.A.2    Uribelarrea, J.L.3    Alfenore, S.4    Guillouet, S.E.5
  • 5
    • 84856402141 scopus 로고    scopus 로고
    • Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol
    • Benjaphokee S., Hasegawa D., Yokota D., Asvarak T., Auesukaree C., Sugiyama M., Kaneko Y., Boonchird C., Harashima S. Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol. New Biotechnol. 2012, 29(3):379-386.
    • (2012) New Biotechnol. , vol.29 , Issue.3 , pp. 379-386
    • Benjaphokee, S.1    Hasegawa, D.2    Yokota, D.3    Asvarak, T.4    Auesukaree, C.5    Sugiyama, M.6    Kaneko, Y.7    Boonchird, C.8    Harashima, S.9
  • 7
    • 24644472817 scopus 로고    scopus 로고
    • Physics and evolution of thermophilic adaptation
    • Berezovsky I.N., Shakhnovich E.I. Physics and evolution of thermophilic adaptation. PNAS 2005, 102(36):12742-12747.
    • (2005) PNAS , vol.102 , Issue.36 , pp. 12742-12747
    • Berezovsky, I.N.1    Shakhnovich, E.I.2
  • 8
    • 84888051667 scopus 로고    scopus 로고
    • Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?
    • Cannella D., Jørgensen H. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?. Biotechnol. Bioeng. 2014, 111(1):59-68.
    • (2014) Biotechnol. Bioeng. , vol.111 , Issue.1 , pp. 59-68
    • Cannella, D.1    Jørgensen, H.2
  • 9
    • 71249083129 scopus 로고    scopus 로고
    • Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae
    • Ding J., Huang X., Zhang L., Zhao N., Yang D., Zhang K. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2009, 85(2):253-263.
    • (2009) Appl. Microbiol. Biotechnol. , vol.85 , Issue.2 , pp. 253-263
    • Ding, J.1    Huang, X.2    Zhang, L.3    Zhao, N.4    Yang, D.5    Zhang, K.6
  • 10
    • 27844584367 scopus 로고    scopus 로고
    • Industrial relevance of thermophilic Archaea
    • Egorova K., Antranikian G. Industrial relevance of thermophilic Archaea. Curr. Opin. Microbiol. 2005, 8(6):649-655.
    • (2005) Curr. Opin. Microbiol. , vol.8 , Issue.6 , pp. 649-655
    • Egorova, K.1    Antranikian, G.2
  • 11
    • 84893677575 scopus 로고    scopus 로고
    • Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues
    • Gu H., Zhang J., Bao J. Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues. Bioresour. Technol. 2014, 157(1):6-13.
    • (2014) Bioresour. Technol. , vol.157 , Issue.1 , pp. 6-13
    • Gu, H.1    Zhang, J.2    Bao, J.3
  • 12
    • 84890116565 scopus 로고    scopus 로고
    • Mannosylation in Candida albicans: role in cell wall function and immune recognition
    • Hall R.A., Gow N.A. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol. Microbiol. 2013, 90(6):1147-1161.
    • (2013) Mol. Microbiol. , vol.90 , Issue.6 , pp. 1147-1161
    • Hall, R.A.1    Gow, N.A.2
  • 13
    • 84862882871 scopus 로고    scopus 로고
    • Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains
    • Hasunuma T., Kondo A. Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem. 2012, 47(9):1287-1294.
    • (2012) Process Biochem. , vol.47 , Issue.9 , pp. 1287-1294
    • Hasunuma, T.1    Kondo, A.2
  • 15
    • 33751395934 scopus 로고    scopus 로고
    • Enhancement of stress tolerance in Saccharomyces cerevisiae by overexpression of ubiquitin ligase rsp5 and ubiquitin-conjugating enzymes
    • Hiraishi H., Mochizuki M., Takagi H. Enhancement of stress tolerance in Saccharomyces cerevisiae by overexpression of ubiquitin ligase rsp5 and ubiquitin-conjugating enzymes. Biosci. Biotechnol. Biochem. 2006, 70(11):2762-2765.
    • (2006) Biosci. Biotechnol. Biochem. , vol.70 , Issue.11 , pp. 2762-2765
    • Hiraishi, H.1    Mochizuki, M.2    Takagi, H.3
  • 16
    • 0035291332 scopus 로고    scopus 로고
    • Improving the freeze tolerance of bakers' yeast by loading with trehalose
    • Hirasawa R., Yokoigawa K., Isobe Y., Kawai H. Improving the freeze tolerance of bakers' yeast by loading with trehalose. Biosci. Biotechnol. Biochem. 2001, 65(3):522-526.
    • (2001) Biosci. Biotechnol. Biochem. , vol.65 , Issue.3 , pp. 522-526
    • Hirasawa, R.1    Yokoigawa, K.2    Isobe, Y.3    Kawai, H.4
  • 17
    • 41549107616 scopus 로고    scopus 로고
    • Engineering triterpene production in Saccharomyces cerevisiae - β-amyrin synthase from Artemisia annua
    • Kirby J., Romanini D.W., Paradise E.M., Keasling J.D. Engineering triterpene production in Saccharomyces cerevisiae - β-amyrin synthase from Artemisia annua. J. FEBS 2008, 275(8):1852-1859.
    • (2008) J. FEBS , vol.275 , Issue.8 , pp. 1852-1859
    • Kirby, J.1    Romanini, D.W.2    Paradise, E.M.3    Keasling, J.D.4
  • 18
    • 84885442514 scopus 로고    scopus 로고
    • Direct and efficient xylitol production from xylan by Saccharomyces cerevisiae through transcriptional level and fermentation processing optimizations
    • Li Z., Qu H., Li C., Zhou X. Direct and efficient xylitol production from xylan by Saccharomyces cerevisiae through transcriptional level and fermentation processing optimizations. Bioresour. Technol. 2013, 149:413-419.
    • (2013) Bioresour. Technol. , vol.149 , pp. 413-419
    • Li, Z.1    Qu, H.2    Li, C.3    Zhou, X.4
  • 19
    • 84882695325 scopus 로고    scopus 로고
    • Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production
    • Lin L., Xu J. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production. Biotechnol. Adv. 2013, 31(6):827-837.
    • (2013) Biotechnol. Adv. , vol.31 , Issue.6 , pp. 827-837
    • Lin, L.1    Xu, J.2
  • 20
    • 0022555843 scopus 로고
    • The heat-shock response
    • Lindquist S. The heat-shock response. Annu. Rev. Biochem. 1986, 55(1):1151-1191.
    • (1986) Annu. Rev. Biochem. , vol.55 , Issue.1 , pp. 1151-1191
    • Lindquist, S.1
  • 21
    • 84897885820 scopus 로고    scopus 로고
    • Engineering cellular robustness of microbes by introducing the GroESL chaperonins from extremophilic bacteria
    • Luan G., Dong H., Zhang T., Lin Z., Zhang Y., Li Y., Cai Z. Engineering cellular robustness of microbes by introducing the GroESL chaperonins from extremophilic bacteria. J. Biotechnol. 2014, 178:38-40.
    • (2014) J. Biotechnol. , vol.178 , pp. 38-40
    • Luan, G.1    Dong, H.2    Zhang, T.3    Lin, Z.4    Zhang, Y.5    Li, Y.6    Cai, Z.7
  • 22
    • 76049111619 scopus 로고    scopus 로고
    • Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses
    • Mahmud S.A., Hirasawa T., Shimizu H. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. J. Biosci. Bioeng. 2010, 109(3):262-266.
    • (2010) J. Biosci. Bioeng. , vol.109 , Issue.3 , pp. 262-266
    • Mahmud, S.A.1    Hirasawa, T.2    Shimizu, H.3
  • 23
    • 84862015365 scopus 로고    scopus 로고
    • Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans
    • Mayer F.L., Wilson D., Jacobsen I.D., Miramon P., Slesiona S., Bohovych I.M., Brown A.J., Hube B. Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans. PLoS. One 2012, 7(6):e38584.
    • (2012) PLoS. One , vol.7 , Issue.6
    • Mayer, F.L.1    Wilson, D.2    Jacobsen, I.D.3    Miramon, P.4    Slesiona, S.5    Bohovych, I.M.6    Brown, A.J.7    Hube, B.8
  • 24
    • 67649213037 scopus 로고    scopus 로고
    • Proteomic analysis on the temperature-dependent complexes in Thermoanaerobacter tengcongensis
    • Meng B., Qian Z., Wei F., Wang W., Zhou C., Wang Z., Wang Q., Tong W., Wang Q., Ma Y. Proteomic analysis on the temperature-dependent complexes in Thermoanaerobacter tengcongensis. Proteomics 2009, 9(11):3189-3200.
    • (2009) Proteomics , vol.9 , Issue.11 , pp. 3189-3200
    • Meng, B.1    Qian, Z.2    Wei, F.3    Wang, W.4    Zhou, C.5    Wang, Z.6    Wang, Q.7    Tong, W.8    Wang, Q.9    Ma, Y.10
  • 25
    • 84859586432 scopus 로고    scopus 로고
    • The response to heat shock and oxidative stress in Saccharomyces cerevisiae
    • Morano K.A., Grant C.M., Moye-Rowley W.S. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 2012, 190(4):1157-1195.
    • (2012) Genetics , vol.190 , Issue.4 , pp. 1157-1195
    • Morano, K.A.1    Grant, C.M.2    Moye-Rowley, W.S.3
  • 26
    • 84863614311 scopus 로고    scopus 로고
    • Isoenzyme expression changes in response to high temperature determine the metabolic regulation of increased glycolytic flux in yeast
    • Postmus J., Aardema R., Koning L.J., Koster C.G., Brul S., Smits G.J. Isoenzyme expression changes in response to high temperature determine the metabolic regulation of increased glycolytic flux in yeast. FEMS Yeast Res. 2012, 12(5):571-581.
    • (2012) FEMS Yeast Res. , vol.12 , Issue.5 , pp. 571-581
    • Postmus, J.1    Aardema, R.2    Koning, L.J.3    Koster, C.G.4    Brul, S.5    Smits, G.J.6
  • 28
    • 84874338727 scopus 로고    scopus 로고
    • Enhanced bio-ethanol production from cellulosic materials by semi-simultaneous saccharification and fermentation using high temperature resistant Saccharomyces cerevisiae TJ14
    • Shahsavarai H., Hasegawa D., Yokota D., Sugiyama M., Kaneko Y., Boonchird C., Harashima S. Enhanced bio-ethanol production from cellulosic materials by semi-simultaneous saccharification and fermentation using high temperature resistant Saccharomyces cerevisiae TJ14. J. Biosci. Bioeng. 2013, 115(1):20-23.
    • (2013) J. Biosci. Bioeng. , vol.115 , Issue.1 , pp. 20-23
    • Shahsavarai, H.1    Hasegawa, D.2    Yokota, D.3    Sugiyama, M.4    Kaneko, Y.5    Boonchird, C.6    Harashima, S.7
  • 29
    • 57649149334 scopus 로고    scopus 로고
    • Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae
    • Shi D.J., Wang C.I., Wang K.M. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. Ind. Microbiol. Biotechnol. 2009, 36(1):139-147.
    • (2009) Ind. Microbiol. Biotechnol. , vol.36 , Issue.1 , pp. 139-147
    • Shi, D.J.1    Wang, C.I.2    Wang, K.M.3
  • 32
    • 70349775063 scopus 로고    scopus 로고
    • Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production
    • Zhao X., Bai F. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J. Biotechnol. 2009, 144(1):23-30.
    • (2009) J. Biotechnol. , vol.144 , Issue.1 , pp. 23-30
    • Zhao, X.1    Bai, F.2
  • 33
    • 78650829210 scopus 로고    scopus 로고
    • Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance
    • Zheng D.Q., Wu X.C., Tao X.L., Wang P.M., Li P., Chi X.Q., Li Y.D., Yan Q.F., Zhao Y.H. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour. Technol. 2011, 102(3):3020-3027.
    • (2011) Bioresour. Technol. , vol.102 , Issue.3 , pp. 3020-3027
    • Zheng, D.Q.1    Wu, X.C.2    Tao, X.L.3    Wang, P.M.4    Li, P.5    Chi, X.Q.6    Li, Y.D.7    Yan, Q.F.8    Zhao, Y.H.9
  • 34
    • 84862800714 scopus 로고    scopus 로고
    • Engineering the robustness of industrial microbes through synthetic biology
    • Zhu L., Zhu Y., Zhang Y., Li Y. Engineering the robustness of industrial microbes through synthetic biology. Trends Microbiol. 2012, 20(2):94-101.
    • (2012) Trends Microbiol. , vol.20 , Issue.2 , pp. 94-101
    • Zhu, L.1    Zhu, Y.2    Zhang, Y.3    Li, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.