메뉴 건너뛰기




Volumn 149, Issue , 2013, Pages 413-419

Direct and efficient xylitol production from xylan by Saccharomyces cerevisiae through transcriptional level and fermentation processing optimizations

Author keywords

Saccharomyces cerevisiae; Semi aerobics; Transcriptional regulation; Xylan; Xylitol production

Indexed keywords

DNA; FERMENTATION; OPTIMIZATION; TRANSCRIPTION; YEAST;

EID: 84885442514     PISSN: 09608524     EISSN: 18732976     Source Type: Journal    
DOI: 10.1016/j.biortech.2013.09.101     Document Type: Article
Times cited : (42)

References (35)
  • 1
  • 3
    • 69049086483 scopus 로고    scopus 로고
    • Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose
    • Boussarsar H., Rogé B., Mathlouthi M. Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose. Bioresour. Technol. 2009, 100:6537-6542.
    • (2009) Bioresour. Technol. , vol.100 , pp. 6537-6542
    • Boussarsar, H.1    Rogé, B.2    Mathlouthi, M.3
  • 4
    • 34250089513 scopus 로고
    • Screening of yeasts for production of xylitol from d-xylose and some factors which affect xylitol yield in Candida guilliermondii
    • Barbosa M.F.S., Medeiros M.B., DeMancilha I.M., Schneider H., Lee H. Screening of yeasts for production of xylitol from d-xylose and some factors which affect xylitol yield in Candida guilliermondii. J. Ind. Microbiol. 1988, 3:241-251.
    • (1988) J. Ind. Microbiol. , vol.3 , pp. 241-251
    • Barbosa, M.F.S.1    Medeiros, M.B.2    DeMancilha, I.M.3    Schneider, H.4    Lee, H.5
  • 5
    • 57649219972 scopus 로고    scopus 로고
    • Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis
    • Cheng K.K., Zhang J.A., Ling H.Z., Ping W.X., Huang W., Ge J.P., Xu J.M. Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochem. Eng. J. 2009, 43:203-207.
    • (2009) Biochem. Eng. J. , vol.43 , pp. 203-207
    • Cheng, K.K.1    Zhang, J.A.2    Ling, H.Z.3    Ping, W.X.4    Huang, W.5    Ge, J.P.6    Xu, J.M.7
  • 6
    • 0037182234 scopus 로고    scopus 로고
    • Stable expression of xylose reductase gene enhances xylitol production in recombinant Saccharomyces cerevisiae
    • Chung Y.S., Kim M.D., Lee W.J., Ryu Y.W., Kim J.H., Seo J.H. Stable expression of xylose reductase gene enhances xylitol production in recombinant Saccharomyces cerevisiae. Enzyme. Microb. Technol. 2002, 30:809-816.
    • (2002) Enzyme. Microb. Technol. , vol.30 , pp. 809-816
    • Chung, Y.S.1    Kim, M.D.2    Lee, W.J.3    Ryu, Y.W.4    Kim, J.H.5    Seo, J.H.6
  • 7
    • 84865278051 scopus 로고    scopus 로고
    • Customized optimization of metabolic pathways by combinatorial transcriptional engineering
    • Du J., Yuan Y.B., Si T., Lian J.Z., Zhao H.M. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res. 2012, 40:e142.
    • (2012) Nucleic Acids Res. , vol.40
    • Du, J.1    Yuan, Y.B.2    Si, T.3    Lian, J.Z.4    Zhao, H.M.5
  • 8
    • 84866744325 scopus 로고    scopus 로고
    • Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae
    • Dai Z.B., Liu Y., Huang L.Q., Zhang X.L. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae. Biotechnol. Bioeng. 2012, 109:2845-2853.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 2845-2853
    • Dai, Z.B.1    Liu, Y.2    Huang, L.Q.3    Zhang, X.L.4
  • 11
    • 33846781800 scopus 로고    scopus 로고
    • A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol
    • Granstrom T.B., Izumori K., Leisola M. A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl. Microbiol. Biotechnol. 2007, 74:273-276.
    • (2007) Appl. Microbiol. Biotechnol. , vol.74 , pp. 273-276
    • Granstrom, T.B.1    Izumori, K.2    Leisola, M.3
  • 12
    • 84870485289 scopus 로고    scopus 로고
    • A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan
    • Guo X., Zhang R., Li Z., Dai D., Li C., Zhou X. A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Bioresour. Technol. 2013, 128:547-552.
    • (2013) Bioresour. Technol. , vol.128 , pp. 547-552
    • Guo, X.1    Zhang, R.2    Li, Z.3    Dai, D.4    Li, C.5    Zhou, X.6
  • 14
    • 0028061721 scopus 로고
    • The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYLI gene
    • Hallborn J., Gorwa M.F., Meinander N., Penttilfi M., Kerfinen S., Hahn-Hfigerdal B. The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYLI gene. Appl. Microbiol. Biotechnol. 1994, 42:326-333.
    • (1994) Appl. Microbiol. Biotechnol. , vol.42 , pp. 326-333
    • Hallborn, J.1    Gorwa, M.F.2    Meinander, N.3    Penttilfi, M.4    Kerfinen, S.5    Hahn-Hfigerdal, B.6
  • 15
    • 84872415347 scopus 로고    scopus 로고
    • Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications
    • Karim A.S., Curran K.A., Alper H.S. Characterization of plasmid burden and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications. FEMS Yeast Res. 2013, 13:107-116.
    • (2013) FEMS Yeast Res. , vol.13 , pp. 107-116
    • Karim, A.S.1    Curran, K.A.2    Alper, H.S.3
  • 16
    • 0030051146 scopus 로고    scopus 로고
    • Expression of a Trichoderma reesei beta-xylanase gene (XYN2) in Saccharomyces cerevisiae
    • La Grange D.C., Pretorius I.S., van Zyl W.H. Expression of a Trichoderma reesei beta-xylanase gene (XYN2) in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1996, 62:1036-1044.
    • (1996) Appl. Environ. Microbiol. , vol.62 , pp. 1036-1044
    • La Grange, D.C.1    Pretorius, I.S.2    van Zyl, W.H.3
  • 17
    • 0035650539 scopus 로고    scopus 로고
    • Degradation of xylan to d-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes
    • La Grange D.C., Pretorius I.S., Claeyssens M., van Zyl W.H. Degradation of xylan to d-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl. Environ. Microbiol. 2001, 67:5512-5519.
    • (2001) Appl. Environ. Microbiol. , vol.67 , pp. 5512-5519
    • La Grange, D.C.1    Pretorius, I.S.2    Claeyssens, M.3    van Zyl, W.H.4
  • 18
    • 35148890697 scopus 로고    scopus 로고
    • Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain
    • Lu C.F., Jeffries T. Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl. Environ. Microbiol. 2007, 73:6072-6077.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 6072-6077
    • Lu, C.F.1    Jeffries, T.2
  • 19
    • 80053008542 scopus 로고    scopus 로고
    • Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02
    • Ling H., Cheng K., Ge J., Ping W. Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. New Biotechnol. 2011, 28:673-678.
    • (2011) New Biotechnol. , vol.28 , pp. 673-678
    • Ling, H.1    Cheng, K.2    Ge, J.3    Ping, W.4
  • 21
    • 0026507266 scopus 로고
    • Dietary prevention of dental caries by xylitol-clinical effectiveness and safety
    • Makinen K. Dietary prevention of dental caries by xylitol-clinical effectiveness and safety. J. Appl. Nutr. 1992, 44:16-28.
    • (1992) J. Appl. Nutr. , vol.44 , pp. 16-28
    • Makinen, K.1
  • 22
    • 0003948189 scopus 로고
    • Process for Making Xylitol
    • US Patent 4,008,285
    • Melaja, A.J., Hamalainen, L., 1977. Process for Making Xylitol. US Patent 4,008,285.
    • (1977)
    • Melaja, A.J.1    Hamalainen, L.2
  • 23
    • 0032550820 scopus 로고    scopus 로고
    • Increase of xylitol production rate by controlling redox potential in Candida parapsilosis
    • Oh D.K., Kim S.Y., Kim J.H. Increase of xylitol production rate by controlling redox potential in Candida parapsilosis. Biotechnol. Bioeng. 1998, 58:440-444.
    • (1998) Biotechnol. Bioeng. , vol.58 , pp. 440-444
    • Oh, D.K.1    Kim, S.Y.2    Kim, J.H.3
  • 25
    • 0026778048 scopus 로고
    • Foreign gene expression in yeast: a review
    • Romanos M.A., Scorer C.A., Clare J.J. Foreign gene expression in yeast: a review. Yeast 1992, 8:423-488.
    • (1992) Yeast , vol.8 , pp. 423-488
    • Romanos, M.A.1    Scorer, C.A.2    Clare, J.J.3
  • 26
    • 43049115291 scopus 로고    scopus 로고
    • Trends in biotechnological production of fuel ethanol from different feedstocks
    • Sanchez O.J., Cardona C.A. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 2008, 99:5270-5295.
    • (2008) Bioresour. Technol. , vol.99 , pp. 5270-5295
    • Sanchez, O.J.1    Cardona, C.A.2
  • 27
    • 59649108349 scopus 로고    scopus 로고
    • DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
    • Shao Z.Y., Zhao H., Zhao H.M. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res. 2009, 37:e16.
    • (2009) Nucleic Acids Res. , vol.37
    • Shao, Z.Y.1    Zhao, H.2    Zhao, H.M.3
  • 29
    • 34548710320 scopus 로고    scopus 로고
    • Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae
    • van Zyl W.H., Lynd L.R., den Haan R., McBride J.E. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 2007, 108:205-235.
    • (2007) Adv. Biochem. Eng. Biotechnol. , vol.108 , pp. 205-235
    • van Zyl, W.H.1    Lynd, L.R.2    Den Haan, R.3    McBride, J.E.4
  • 30
    • 0029589197 scopus 로고
    • Xylitol formation and key enzyme activity in Candida boidinii under different oxygen transfer rates
    • Vandeska E., Kuzmanova S., Jeffries T.W. Xylitol formation and key enzyme activity in Candida boidinii under different oxygen transfer rates. J. Ferment. Bioeng. 1995, 80:513-516.
    • (1995) J. Ferment. Bioeng. , vol.80 , pp. 513-516
    • Vandeska, E.1    Kuzmanova, S.2    Jeffries, T.W.3
  • 31
    • 79959940437 scopus 로고    scopus 로고
    • An environmentally friendly and efficient method for xylitol bioconversion with high-temperature-steaming corncob hydrolysate by adapted Candida tropicalis
    • Wang L., Yang M., Fan X., Zhu X., Xu T., Yuan Q. An environmentally friendly and efficient method for xylitol bioconversion with high-temperature-steaming corncob hydrolysate by adapted Candida tropicalis. Process. Biochem. 2011, 46:1619-1626.
    • (2011) Process. Biochem. , vol.46 , pp. 1619-1626
    • Wang, L.1    Yang, M.2    Fan, X.3    Zhu, X.4    Xu, T.5    Yuan, Q.6
  • 34
    • 77950475482 scopus 로고    scopus 로고
    • Hydrolysis of wheat straw hemicellulose and detoxification of the hydrolysate for xylitol production
    • Zhuang J., Liu Y., Wu Z., Sun Y., Lin L. Hydrolysis of wheat straw hemicellulose and detoxification of the hydrolysate for xylitol production. BioResources 2009, 4:674-686.
    • (2009) BioResources , vol.4 , pp. 674-686
    • Zhuang, J.1    Liu, Y.2    Wu, Z.3    Sun, Y.4    Lin, L.5
  • 35
    • 84865530859 scopus 로고    scopus 로고
    • Effects of lignin-derived phenolic compounds on xylitol production and key enzyme activities by a xylose utilizing yeast Candida athensensis SB18
    • Zhang J., Geng A., Yao C., Lu Y., Li Q. Effects of lignin-derived phenolic compounds on xylitol production and key enzyme activities by a xylose utilizing yeast Candida athensensis SB18. Bioresour. Technol. 2012, 121:369-378.
    • (2012) Bioresour. Technol. , vol.121 , pp. 369-378
    • Zhang, J.1    Geng, A.2    Yao, C.3    Lu, Y.4    Li, Q.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.