메뉴 건너뛰기




Volumn 26, Issue 3, 2014, Pages 461-483

Effective active learning strategies for the use of large-margin classifiers in semantic annotation: An optimal parameter discovery perspective

Author keywords

Active learning; Business intelligence; Data mining; Machine learning; Optimization

Indexed keywords

ARTIFICIAL INTELLIGENCE; BENCHMARKING; COMPETITIVE INTELLIGENCE; DATA MINING; LEARNING SYSTEMS; OPTIMIZATION; SEMANTICS;

EID: 84905238574     PISSN: 10919856     EISSN: 15265528     Source Type: Journal    
DOI: 10.1287/ijoc.2013.0578     Document Type: Article
Times cited : (2)

References (85)
  • 3
    • 0000601464 scopus 로고    scopus 로고
    • The world wide web: Opportunities for operations research and management science
    • Bhargava HK, Krishnan R. (1998) The World Wide Web: Opportunities for operations research and management science. INFORMS J. Comput. 10(4):359-383.
    • (1998) INFORMS J. Comput. , vol.10 , Issue.4 , pp. 359-383
    • Bhargava, H.K.1    Krishnan, R.2
  • 4
    • 84871881578 scopus 로고    scopus 로고
    • Efficiently learning the preferences of people
    • Birlutiu A, Groot P, Heskes T. (2012) Efficiently learning the preferences of people. Machine Learn. 10(4):1-28.
    • (2012) Machine Learn. , vol.10 , Issue.4 , pp. 1-28
    • Birlutiu, A.1    Groot, P.2    Heskes, T.3
  • 6
    • 79955576879 scopus 로고    scopus 로고
    • Detecting relevant variables and interactions in supervised classification
    • Carrizosa E, Mart-Barrag B, Moralesc D. (2011) Detecting relevant variables and interactions in supervised classification. Eur. J. Oper. Res. 213(1):260-269.
    • (2011) Eur. J. Oper. Res. , vol.213 , Issue.1 , pp. 260-269
    • Carrizosa, E.1    Mart-Barrag, B.2    Moralesc, D.3
  • 7
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • Cohn D, Atlas L, Ladner R. (1994) Improving generalization with active learning. Machine Learn. 15(2):201-221.
    • (1994) Machine Learn. , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 8
    • 29344432464 scopus 로고    scopus 로고
    • Reducing labeling effort for structured prediction tasks
    • (AAAI Press, Menlo Park, CA)
    • Culotta A, McCallum A. (2005) Reducing labeling effort for structured prediction tasks. Proc. 20th National Conf. Artificial Intelligence (AAAI Press, Menlo Park, CA), 746-751.
    • (2005) Proc. 20th National Conf. Artificial Intelligence , pp. 746-751
    • Culotta, A.1    McCallum, A.2
  • 9
    • 0037554039 scopus 로고    scopus 로고
    • GATE: A framework and geographical development environment for robust NLP tools and applications
    • (Association for Computational Linguistics, Stroudsburg, PA)
    • Cunningham H, Maynard D, Bontcheva K., Tablan V. (2002) GATE: A framework and geographical development environment for robust NLP tools and applications. Proc. 40th Anniversary Meeting Assoc. Comput. Linguistics (Association for Computational Linguistics, Stroudsburg, PA).
    • (2002) Proc. 40th Anniversary Meeting Assoc. Comput. Linguistics
    • Cunningham, H.1    Maynard, D.2    Bontcheva, K.3    Tablan, V.4
  • 10
    • 38549141929 scopus 로고    scopus 로고
    • Yahoo! for amazon: Sentiment extraction from small talk on the web
    • Das SR, Chen M.Y. (2007) Yahoo! for Amazon: Sentiment extraction from small talk on the Web. Management Sci. 53(9):1375-1388.
    • (2007) Management Sci. , vol.53 , Issue.9 , pp. 1375-1388
    • Das, S.R.1    Chen, M.Y.2
  • 12
    • 9444254243 scopus 로고    scopus 로고
    • Introduction to the CONLL-2002 shared task: Language-independent named entity recognition
    • (Association for Computational Linguistics, Stroudsburg, PA)
    • Erik F, Tjong K.S. (2002) Introduction to the CONLL-2002 shared task: Language-independent named entity recognition. Proc. Sixth Conf. Natural Language Learn. (Association for Computational Linguistics, Stroudsburg, PA), 155-158.
    • (2002) Proc. Sixth Conf. Natural Language Learn. , pp. 155-158
    • Erik, F.1    Tjong, K.S.2
  • 13
    • 84867308892 scopus 로고    scopus 로고
    • D-confidence: An active learning strategy which efficiently identifies small classes
    • (Association for Computational Linguistics, Stroudsburg, PA)
    • Escudeiro N, Jorge A. (2010) D-Confidence: An active learning strategy which efficiently identifies small classes. Proc. NAACL HLT 2010 Workshop on Active Learn. Natural Language Processing, (Association for Computational Linguistics, Stroudsburg, PA), 18-26.
    • (2010) Proc. NAACL HLT 2010 Workshop on Active Learn. Natural Language Processing , pp. 18-26
    • Escudeiro, N.1    Jorge, A.2
  • 15
    • 21044456970 scopus 로고    scopus 로고
    • Genetic programming-based discovery of ranking functions for effective web search
    • Fan W, Michael GD, Pathak P. (2005) Genetic programming-based discovery of ranking functions for effective Web search. J. Management Inform. Systems 21(4):37-56.
    • (2005) J. Management Inform. Systems , vol.21 , Issue.4 , pp. 37-56
    • Fan, W.1    Michael, G.D.2    Pathak, P.3
  • 16
    • 0041414640 scopus 로고    scopus 로고
    • Managerial information overload
    • Farhoomand AF, Drury D.H. (2002) Managerial information overload. Comm. ACM 45(10):127-131.
    • (2002) Comm. ACM , vol.45 , Issue.10 , pp. 127-131
    • Farhoomand, A.F.1    Drury, D.H.2
  • 17
    • 0036680338 scopus 로고    scopus 로고
    • Learning cost-sensitive active classifiers
    • Greiner R, Grove AJ, Roth D. (2002) Learning cost-sensitive active classifiers. Artificial Intelligence 139(2):137-174.
    • (2002) Artificial Intelligence , vol.139 , Issue.2 , pp. 137-174
    • Greiner, R.1    Grove, A.J.2    Roth, D.3
  • 18
    • 78651471366 scopus 로고    scopus 로고
    • Benchmarking of semantic annotation with conditional random fields
    • Semantic and Digital Media Technologies (Institution of Electrical Engineers, London)
    • Grilheres B, Beauce C, Canu S., Brunessaux S. (2005) Benchmarking of semantic annotation with conditional random fields. Proc. 2th Eur. Workshop on the Integration of Knowledge, Semantic and Digital Media Technologies (Institution of Electrical Engineers, London), 233-236.
    • (2005) Proc. 2th Eur. Workshop on the Integration of Knowledge , pp. 233-236
    • Grilheres, B.1    Beauce, C.2    Canu, S.3    Brunessaux, S.4
  • 20
    • 53049090858 scopus 로고    scopus 로고
    • Using support vector machines to learn the efficient set in multiple objective discrete optimization
    • Haldun A, Serpil S. (2009) Using support vector machines to learn the efficient set in multiple objective discrete optimization. Eur. J. Oper. Res. 193(2):510-519.
    • (2009) Eur. J. Oper. Res. , vol.193 , Issue.2 , pp. 510-519
    • Haldun, A.1    Serpil, S.2
  • 22
    • 34249683794 scopus 로고    scopus 로고
    • Incremental support vector machines and their geometrical analyses
    • Ikeda K, Yamasaki T. (2007) Incremental support vector machines and their geometrical analyses. Neurocomputing 70(13-15): 2528-2533.
    • (2007) Neurocomputing , vol.70 , Issue.13-15 , pp. 2528-2533
    • Ikeda, K.1    Yamasaki, T.2
  • 24
    • 33751362447 scopus 로고    scopus 로고
    • Text mining for medical documents using a hidden Markov model
    • (Springer-Verlag, Berlin)
    • Jang H, Song SK, Myaeng S.H. (2006) Text mining for medical documents using a hidden Markov model. Proc. 3rd Asia Conf. Inform. Retrieval Tech. (Springer-Verlag, Berlin), 553-559.
    • (2006) Proc. 3rd Asia Conf. Inform. Retrieval Tech. , pp. 553-559
    • Jang, H.1    Song, S.K.2    Myaeng, S.H.3
  • 25
    • 33846274880 scopus 로고    scopus 로고
    • Cost-sensitive feature acquisition and classification
    • Ji S, Carin L. (2007) Cost-sensitive feature acquisition and classification. Pattern Recognition 40(5):1474-1485.
    • (2007) Pattern Recognition , vol.40 , Issue.5 , pp. 1474-1485
    • Ji, S.1    Carin, L.2
  • 26
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • Schölkopf B, Burges JC, Smola AJ, eds. (MIT Press, Cambridge, MA)
    • Joachims T (1999) Making large-scale support vector machine learning practical. Schölkopf B, Burges JC, Smola AJ, eds. Advances in Kernel Methods: Support Vector Learning (MIT Press, Cambridge, MA), 169-184.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 28
    • 56349142571 scopus 로고    scopus 로고
    • Knowledge based proximal support vector machines
    • Khemchandani R, Jayadeva, Chandra S (2009) Knowledge based proximal support vector machines. Eur. J. Oper. Res. 195(3): 914-923.
    • (2009) Eur. J. Oper. Res. , vol.195 , Issue.3 , pp. 914-923
    • Khemchandani, R.1    Jayadeva Chandra, S.2
  • 31
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • (Morgan Kaufmann, San Francisco)
    • Lafferty J, McCallum A, Pereira F. (2001) Conditional random fields: Probabilistic models for segmenting and labeling sequence data. Proc. 18th Internat. Conf. Machine Learn. (Morgan Kaufmann, San Francisco), 282-289.
    • (2001) Proc. 18th Internat. Conf. Machine Learn , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 32
    • 70350492916 scopus 로고    scopus 로고
    • Active structured learning for highspeed object detection
    • (Springer-Verlag, Berlin)
    • Lampert CH, Peters J. (2009) Active structured learning for highspeed object detection. Proc. 31st DAGM Sympos. Pattern Recognition (Springer-Verlag, Berlin), 221-231.
    • (2009) Proc. 31st DAGM Sympos. Pattern Recognition , pp. 221-231
    • Lampert, C.H.1    Peters, J.2
  • 33
    • 0037991523 scopus 로고    scopus 로고
    • Online training of support vector classifier
    • Lau KW, Wu Q.H. (2003) Online training of support vector classifier. Pattern Recognition 36(8):1913-1920.
    • (2003) Pattern Recognition , vol.36 , Issue.8 , pp. 1913-1920
    • Lau, K.W.1    Wu, Q.H.2
  • 34
    • 42049092041 scopus 로고    scopus 로고
    • Towards a belief revision based adaptive and context sensitive information retrieval system
    • Lau RYK, Bruza PD, Song D. (2008) Towards a belief revision based adaptive and context sensitive information retrieval system. ACM Trans. Inform. Systems 26(2):8.1-8.38.
    • (2008) ACM Trans. Inform. Systems , vol.26 , Issue.2 , pp. 81-838
    • Lau, R.Y.K.1    Bruza, P.D.2    Song, D.3
  • 37
    • 84867130315 scopus 로고    scopus 로고
    • Structured learning from partial annotations
    • (Omnipress, New York)
    • Lou X, Hamprecht F.A. (2012) Structured learning from partial annotations. Proc. 29th Internat. Conf. Machine Learn. (Omnipress, New York), 1519-1526.
    • (2012) Proc. 29th Internat. Conf. Machine Learn , pp. 1519-1526
    • Lou, X.1    Hamprecht, F.A.2
  • 39
    • 34447292534 scopus 로고    scopus 로고
    • Comprehensible credit scoring models using rule extraction from support vector machines
    • Martens D, Baesens B, Gestel V., Vanthienen J. (2007) Comprehensible credit scoring models using rule extraction from support vector machines. Eur. J. Oper. Res. 183(3):1466-1476.
    • (2007) Eur. J. Oper. Res. , vol.183 , Issue.3 , pp. 1466-1476
    • Martens, D.1    Baesens, B.2    Gestel, V.3    Vanthienen, J.4
  • 42
    • 0000531852 scopus 로고
    • Generalization as search
    • Mitchell TM (1982) Generalization as search. Artificial Intelligence 18(2):203-226.
    • (1982) Artificial Intelligence , vol.18 , Issue.2 , pp. 203-226
    • Mitchell, T.M.1
  • 44
    • 34547982896 scopus 로고    scopus 로고
    • Comparisons of sequence labeling algorithms and extensions
    • (ACM, New York)
    • Nguyen N, Guo Y. (2007) Comparisons of sequence labeling algorithms and extensions. Proc. Twenty-Fourth Internat. Conf. Machine Learn. (ACM, New York), 681-688.
    • (2007) Proc. Twenty-Fourth Internat. Conf. Machine Learn , pp. 681-688
    • Nguyen, N.1    Guo, Y.2
  • 46
    • 36849013659 scopus 로고    scopus 로고
    • Operations research and data mining
    • Olafsson S, Li X, Wu S. (2008) Operations research and data mining. Eur. J. Oper. Res. 187(3):1429-1448.
    • (2008) Eur. J. Oper. Res. , vol.187 , Issue.3 , pp. 1429-1448
    • Olafsson, S.1    Li, X.2    Wu, S.3
  • 48
    • 0242624459 scopus 로고    scopus 로고
    • On the use of optimization for data mining: Theoretical interactions and eCRM opportunities
    • Padmanabhan B, Tuzhilin A. (2003) On the use of optimization for data mining: Theoretical interactions and eCRM opportunities. Management Sci. 49(10):1327-1343.
    • (2003) Management Sci. , vol.49 , Issue.10 , pp. 1327-1343
    • Padmanabhan, B.1    Tuzhilin, A.2
  • 50
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. IEEE 77(2):257-286.
    • (1989) IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 51
    • 33845396124 scopus 로고    scopus 로고
    • Integrating hidden Markov models into semantic web annotation platforms
    • Drexel University, Philadelphia, PA
    • Reeve L (2004) Integrating hidden Markov models into semantic Web annotation platforms. Technical report, College of Information Science and Technology, Drexel University, Philadelphia, PA.
    • (2004) Technical Report, College of Information Science and Technology
    • Reeve, L.1
  • 53
    • 78149303576 scopus 로고    scopus 로고
    • Incremental learning with support vector machines
    • (IEEE Computer Society, Washington, DC)
    • Ring S (2001) Incremental learning with support vector machines. Proc. First IEEE Internat. Conf. Data Mining (IEEE Computer Society, Washington, DC), 641-642.
    • (2001) Proc. First IEEE Internat. Conf. Data Mining , pp. 641-642
    • Ring, S.1
  • 55
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • Brodley CE, Danyluk A, eds. (Morgan Kaufmann, San Francisco)
    • Roy N, McCallum A. (2001) Toward optimal active learning through sampling estimation of error reduction. Brodley CE, Danyluk A, eds. Proc. Eighteenth Internat. Conf. Machine Learn. (Morgan Kaufmann, San Francisco), 441-448.
    • (2001) Proc. Eighteenth Internat. Conf. Machine Learn , pp. 441-448
    • Roy, N.1    McCallum, A.2
  • 58
    • 26944448648 scopus 로고    scopus 로고
    • The identification and satisfaction of consumer analysis-driven information needs of marketers on the www
    • Sen S, Padmanabhan B, Tuzhilin A., White NH, Stein R. (1998) The identification and satisfaction of consumer analysis-driven information needs of marketers on the www. Eur. J. Marketing 32(7-8):688-702.
    • (1998) Eur. J. Marketing , vol.32 , Issue.7-8 , pp. 688-702
    • Sen, S.1    Padmanabhan, B.2    Tuzhilin, A.3    White, N.H.4    Stein, R.5
  • 60
    • 84873124152 scopus 로고    scopus 로고
    • From theories to queries: Active learning in practice
    • (Microtome Publishing, Brookline, MA)
    • Settles B (2011) From theories to queries: Active learning in practice. JMLR Workshop Conf. Proc. (Microtome Publishing, Brookline, MA), 1-18.
    • (2011) JMLR Workshop Conf. Proc. , pp. 1-18
    • Settles, B.1
  • 61
    • 80053375448 scopus 로고    scopus 로고
    • An analysis of active learning strategies for sequence labeling tasks
    • (Association for Computational Linguistics, Stroudsburg, PA)
    • Settles B, Craven M. (2008) An analysis of active learning strategies for sequence labeling tasks. Proc. 2008 Conf. Empirical Methods: in Natural Language Processing (Association for Computational Linguistics, Stroudsburg, PA), 1070-1079.
    • (2008) Proc. 2008 Conf. Empirical Methods: In Natural Language Processing , pp. 1070-1079
    • Settles, B.1    Craven, M.2
  • 63
    • 70350693274 scopus 로고    scopus 로고
    • Multi-criteria-based active learning for named entity recognition
    • (Association for Computational Linguistics, Stroudsburg, PA)
    • Shen D, Zhang J, Su J., Zhou G, Tan C. (2004) Multi-criteria-based active learning for named entity recognition. Proc. 42nd Annual Meeting Assoc. Comput. Linguistics (Association for Computational Linguistics, Stroudsburg, PA), 589.
    • (2004) Proc. 42nd Annual Meeting Assoc. Comput. Linguistics , pp. 589
    • Shen, D.1    Zhang, J.2    Su, J.3    Zhou, G.4    Tan, C.5
  • 64
    • 0037368670 scopus 로고    scopus 로고
    • Generating and browsing multiple taxonomies over a document collection
    • Spangler S, Kreulen JT, Lessler J. (2003) Generating and browsing multiple taxonomies over a document collection. J. Management Inform. Systems 19(4):191-212.
    • (2003) J. Management Inform. Systems , vol.19 , Issue.4 , pp. 191-212
    • Spangler, S.1    Kreulen, J.T.2    Lessler, J.3
  • 65
    • 3843092716 scopus 로고    scopus 로고
    • Web business intelligence: Mining the web for actionable knowledge
    • Srivastava J, Cooley R. (2003) Web business intelligence: Mining the Web for actionable knowledge. INFORMS J. Comput. 15(2): 191-207.
    • (2003) INFORMS J. Comput. , vol.15 , Issue.2 , pp. 191-207
    • Srivastava, J.1    Cooley, R.2
  • 66
    • 2542587466 scopus 로고    scopus 로고
    • Relationship-based clustering and visualization for high-dimensional data mining
    • Strehl A, Ghosh J. (2003) Relationship-based clustering and visualization for high-dimensional data mining. INFORMS J. Comput. 15(2):208-230.
    • (2003) INFORMS J. Comput. , vol.15 , Issue.2 , pp. 208-230
    • Strehl, A.1    Ghosh, J.2
  • 67
    • 57349089411 scopus 로고    scopus 로고
    • Robust information extraction with perceptrons
    • (NIST Multimodal Information Group, Washington, DC)
    • Surdeanu M, Ciaramita M. (2007) Robust information extraction with perceptrons. Proc. NIST 2007 Automatic Content Extraction Workshop (NIST Multimodal Information Group, Washington, DC), 1-4.
    • (2007) Proc. NIST 2007 Automatic Content Extraction Workshop , pp. 1-4
    • Surdeanu, M.1    Ciaramita, M.2
  • 68
    • 34547987363 scopus 로고    scopus 로고
    • Piecewise pseudolikelihood for efficient training of conditional random fields
    • (ACM, New York)
    • Sutton C, McCallum A. (2007) Piecewise pseudolikelihood for efficient training of conditional random fields. Proc. 24th Internat. Conf. Machine Learn. (ACM, New York), 863-870.
    • (2007) Proc. 24th Internat. Conf. Machine Learn. , pp. 863-870
    • Sutton, C.1    McCallum, A.2
  • 70
    • 33845385608 scopus 로고    scopus 로고
    • Tree-structured conditional random fields for semantic annotation
    • (Springer-Verlag, Berlin)
    • Tang J, Hong M, Li J., Liang B. (2006) Tree-structured conditional random fields for semantic annotation. Proc. Fifth Internat. Semantic Web Conf. (Springer-Verlag, Berlin), 640-653.
    • (2006) Proc. Fifth Internat. Semantic Web Conf. , pp. 640-653
    • Tang, J.1    Hong, M.2    Li, J.3    Liang, B.4
  • 71
    • 2942688970 scopus 로고    scopus 로고
    • Active learning for natural language parsing and information extraction
    • (Morgan Kaufmann, San Francisco)
    • Thompson CA, Califf ME, Mooney R.J. (1999) Active learning for natural language parsing and information extraction. Proc. Sixteenth Internat. Conf. Machine Learn. (Morgan Kaufmann, San Francisco), 406-414.
    • (1999) Proc. Sixteenth Internat. Conf. Machine Learn. , pp. 406-414
    • Thompson, C.A.1    Califf, M.E.2    Mooney, R.J.3
  • 72
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong S, Koller D. (2002) Support vector machine active learning with applications to text classification. J. Machine Learn. Res. 2:45-66.
    • (2002) J. Machine Learn. Res. , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 78
    • 39749177788 scopus 로고    scopus 로고
    • Managing word mismatch problems in information retrieval: A topic-based query expansion approach
    • Wei CP, Hu PJ, Tai C.H., Huang CN, Yang C.S. (2008) Managing word mismatch problems in information retrieval: A topic-based query expansion approach. J. Management Inform. Systems 24(3):269-295.
    • (2008) J. Management Inform. Systems , vol.24 , Issue.3 , pp. 269-295
    • Wei, C.P.1    Hu, P.J.2    Tai, C.H.3    Huang, C.N.4    Yang, C.S.5
  • 79
    • 0344551862 scopus 로고    scopus 로고
    • Automatically labeling video data using multi-class active learning
    • (IEEE Computer Society, Washington, DC)
    • Yan R, Yang J, Hauptmann A. (2003) Automatically labeling video data using multi-class active learning. Proc. Ninth IEEE Internat. Conf. Comput. Vision (IEEE Computer Society, Washington, DC), 516-523.
    • (2003) Proc. Ninth IEEE Internat. Conf. Comput. Vision , pp. 516-523
    • Yan, R.1    Yang, J.2    Hauptmann, A.3
  • 84
    • 33646372465 scopus 로고    scopus 로고
    • Selectively acquiring customer information: A new data acquisition problem and an active learning-based solution
    • Zheng Z, Padmanabhan B. (2006) Selectively acquiring customer information: A new data acquisition problem and an active learning-based solution. Management Sci. 52(5): 697-712.
    • (2006) Management Sci. , vol.52 , Issue.5 , pp. 697-712
    • Zheng, Z.1    Padmanabhan, B.2
  • 85
    • 48849087800 scopus 로고    scopus 로고
    • Dynamic hierarchical Markov random fields for integrated web data extraction
    • Zhu J, Nie Z, Zhang B., Wen J-R (2008) Dynamic hierarchical markov random fields for integrated Web data extraction. J. Machine Learn. Res. 9:1583-1614.
    • (2008) J. Machine Learn. Res. , vol.9 , pp. 1583-1614
    • Zhu, J.1    Nie, Z.2    Zhang, B.3    Wen, J.-R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.