메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 1583-1614

Dynamic hierarchical Markov random fields for integrated web data extraction

Author keywords

Blocky artifact issue; Conditional random fields; Dynamic hierarchical Markov random fields; Integrated web data extraction; Statistical hierarchical modeling

Indexed keywords

HIDDEN MARKOV MODELS; HIERARCHICAL SYSTEMS; IMAGE SEGMENTATION; JOINTS (STRUCTURAL COMPONENTS); LABELS; MARKOV PROCESSES;

EID: 48849087800     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (30)

References (44)
  • 9
    • 33750028795 scopus 로고    scopus 로고
    • Corrective feedback and persistent learning for information extraction
    • Aron Culotta, Trausti Kristjansson, Andrew McCallum, and Paul Viola. Corrective feedback and persistent learning for information extraction. Artificial Intelligence Journal, 170(14):1101-1122, 2006.
    • (2006) Artificial Intelligence Journal , vol.170 , Issue.14 , pp. 1101-1122
    • Culotta, A.1    Kristjansson, T.2    McCallum, A.3    Viola, P.4
  • 14
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 15
    • 0031275764 scopus 로고    scopus 로고
    • An overlapping tree approach to multiscale stochastic modeling and estimation
    • William W. Irving, Paul W. Fieguth, and Alan S. Willsky. An overlapping tree approach to multiscale stochastic modeling and estimation. IEEE Trans. on Image Processing, 6(11):1517-1529, 1997.
    • (1997) IEEE Trans. on Image Processing , vol.6 , Issue.11 , pp. 1517-1529
    • Irving, W.W.1    Fieguth, P.W.2    Willsky, A.S.3
  • 16
    • 48849117258 scopus 로고    scopus 로고
    • Michael I. Jordan, Zoubin Ghahramani, Tommis Jaakkola, and Lawrence K. Saul. An Introduction to Variational Methods for Graphical Models. M. I. Jordan (Ed.), Learning in Graphical Models, Cambridge: MIT Press, Cambridge, MA, 1999.
    • Michael I. Jordan, Zoubin Ghahramani, Tommis Jaakkola, and Lawrence K. Saul. An Introduction to Variational Methods for Graphical Models. M. I. Jordan (Ed.), Learning in Graphical Models, Cambridge: MIT Press, Cambridge, MA, 1999.
  • 18
    • 33745848658 scopus 로고    scopus 로고
    • A hierarchical field framework for unified context-based classification
    • Beijing, China
    • Sanjiv Kumar and Martial Hebert. A hierarchical field framework for unified context-based classification. In IEEE International Conference on Computer Vision, Beijing, China, 2005.
    • (2005) IEEE International Conference on Computer Vision
    • Kumar, S.1    Hebert, M.2
  • 19
    • 0034172374 scopus 로고    scopus 로고
    • Wrapper induction: Efficiency and expressiveness
    • Nicholas Kushmerick. Wrapper induction: efficiency and expressiveness. Artificial Intelligence, 118:15-68, 2000.
    • (2000) Artificial Intelligence , vol.118 , pp. 15-68
    • Kushmerick, N.1
  • 20
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Williams College, Williamstown, MA
    • John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. of the International Conference on Machine Learning, Williams College, Williamstown, MA, 2001.
    • (2001) Proc. of the International Conference on Machine Learning
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 22
    • 0034245909 scopus 로고    scopus 로고
    • Multiresolution image classification by hierarchical modeling with two-dimensional hidden Markov models
    • Jia Li, Robert M. Gray, and Richard A. Olshen. Multiresolution image classification by hierarchical modeling with two-dimensional hidden Markov models. IEEE Trans. on Information Theory, 46 (5):1826-1841, 2000.
    • (2000) IEEE Trans. on Information Theory , vol.46 , Issue.5 , pp. 1826-1841
    • Li, J.1    Gray, R.M.2    Olshen, R.A.3
  • 24
    • 33646887390 scopus 로고
    • On the limited memory bfgs method for large scale optimization
    • Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization. Mathematical Programming, 45:503-528, 1989.
    • (1989) Mathematical Programming , vol.45 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 27
    • 48849105464 scopus 로고    scopus 로고
    • An introduction to exponential random graph (p*) model for social networks
    • Garry Robins, Pip Pattison, Yuval Kalish, and Dean Lusher. An introduction to exponential random graph (p*) model for social networks. Social Networks, 2006.
    • (2006) Social Networks
    • Robins, G.1    Pattison, P.2    Kalish, Y.3    Lusher, D.4
  • 31
    • 14344253846 scopus 로고    scopus 로고
    • Dynamic conditional random fields: Factorized probabilistic models for labeling and segmenting sequence data
    • Banff, Canada
    • Charles Sutton, Khashayar Rohanimanesh, and Andrew McCallum. Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data. In Proc. of the International Conference on Machine Learning, Banff, Canada, 2004.
    • (2004) Proc. of the International Conference on Machine Learning
    • Sutton, C.1    Rohanimanesh, K.2    McCallum, A.3
  • 35
    • 78651077964 scopus 로고    scopus 로고
    • Learning in Markov random fields with contrastive free energies
    • Barbados
    • Max Welling and Charles Sutton. Learning in Markov random fields with contrastive free energies. In Artificial Intelligence and Statistics, Barbados, 2005.
    • (2005) Artificial Intelligence and Statistics
    • Welling, M.1    Sutton, C.2
  • 37
    • 0345421566 scopus 로고    scopus 로고
    • Multiresolution Markov models for signal and image processing
    • Alan S. Willsky. Multiresolution Markov models for signal and image processing. In Proc. of the IEEE, 2002.
    • (2002) Proc. of the IEEE
    • Willsky, A.S.1
  • 41
    • 31844452562 scopus 로고    scopus 로고
    • Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, and Wei-Ying Ma. 2D conditional random fields for web information extraction. In Proc. of the International Conference on Machine Learning, Bonn, Germany, 2005.
    • Jun Zhu, Zaiqing Nie, Ji-Rong Wen, Bo Zhang, and Wei-Ying Ma. 2D conditional random fields for web information extraction. In Proc. of the International Conference on Machine Learning, Bonn, Germany, 2005.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.