-
1
-
-
38349091259
-
Maximum margin semi-supervised learning for structured variables
-
Altun, Y., McAllester, D., and Belkin, M. Maximum margin semi-supervised learning for structured variables. In NIPS, 2006.
-
(2006)
NIPS
-
-
Altun, Y.1
McAllester, D.2
Belkin, M.3
-
2
-
-
36849072723
-
-
MIT Press, Cambridge, MA
-
Bakir, G., Hofmann, T., Schoelkopf, B., Smola, A. J., Taskar, B., and Vishwanathan, S.V.N. Predicting Structured Data. MIT Press, Cambridge, MA, 2006.
-
(2006)
Predicting Structured Data
-
-
Bakir, G.1
Hofmann, T.2
Schoelkopf, B.3
Smola, A.J.4
Taskar, B.5
Vishwanathan, S.V.N.6
-
3
-
-
79960111667
-
Learning from Partial Labels
-
Cour, T., Sapp, B., and Taskar, B. Learning from Partial Labels. JMLR, 12:1225-1261, 2011.
-
(2011)
JMLR
, vol.12
, pp. 1225-1261
-
-
Cour, T.1
Sapp, B.2
Taskar, B.3
-
4
-
-
85072773147
-
Tighter bounds for structured estimation
-
Do, C. B., Le, Q., Teo, C. H., Chapelle, O., and Smola, A. Tighter bounds for structured estimation. In NIPS, 2008.
-
(2008)
NIPS
-
-
Do, C.B.1
Le, Q.2
Teo, C.H.3
Chapelle, O.4
Smola, A.5
-
5
-
-
85126493478
-
Learning from partially annotated sequences
-
Fernandes, E. and Brefeld, U. Learning from partially annotated sequences. In ECML/PKDD, 2011.
-
(2011)
ECML/PKDD
-
-
Fernandes, E.1
Brefeld, U.2
-
7
-
-
85162034192
-
Learning from Candidate Labeling Sets
-
Jie, L. and Orabona, F. Learning from Candidate Labeling Sets. In NIPS, 2010.
-
(2010)
NIPS
-
-
Jie, L.1
Orabona, F.2
-
8
-
-
85156212629
-
Learning with Multiple Labels
-
Jin, R. and Ghahramani, Z. Learning with Multiple Labels. In NIPS, 2002.
-
(2002)
NIPS
-
-
Jin, R.1
Ghahramani, Z.2
-
9
-
-
0025208765
-
Proximity control in bundle methods for convex nondifferentiable minimization
-
Kiwiel, K. C. Proximity control in bundle methods for convex nondifferentiable minimization. Math Program, 46(1):105-122, 1990.
-
(1990)
Math Program
, vol.46
, Issue.1
, pp. 105-122
-
-
Kiwiel, K.C.1
-
10
-
-
85157973211
-
Learning to model spatial dependency: Semi-supervised discriminative random fields
-
Lee, C. H., Wang, S., Jiao, F., Schuurmans, D., and Greiner, R. Learning to model spatial dependency: Semi-supervised discriminative random fields. In NIPS, 2006.
-
(2006)
NIPS
-
-
Lee, C.H.1
Wang, S.2
Jiao, F.3
Schuurmans, D.4
Greiner, R.5
-
11
-
-
84867113846
-
Structured learning for cell tracking
-
Lou, X. and Hamprecht, F. A. Structured learning for cell tracking. In NIPS, 2011.
-
(2011)
NIPS
-
-
Lou, X.1
Hamprecht, F.A.2
-
12
-
-
85162419778
-
Generalization Bounds and Consistency for Latent Structural Probit and Ramp Loss
-
McAllester, D. and Keshet, J. Generalization Bounds and Consistency for Latent Structural Probit and Ramp Loss. In NIPS, 2011.
-
(2011)
NIPS
-
-
McAllester, D.1
Keshet, J.2
-
13
-
-
85162488701
-
Direct loss minimization for structured prediction
-
McAllester, David, Hazan, Tamir, and Keshet, Joseph. Direct loss minimization for structured prediction. In NIPS, 2010.
-
(2010)
NIPS
-
-
McAllester, D.1
Hazan, T.2
Keshet, J.3
-
14
-
-
85162059405
-
More data means less inference: A pseudo-max approach to structured learning
-
Sontag, D., Meshi, O., Jaakkola, T. S., and Globerson, A. More data means less inference: A pseudo-max approach to structured learning. In NIPS, 2010.
-
(2010)
NIPS
-
-
Sontag, D.1
Meshi, O.2
Jaakkola, T.S.3
Globerson, A.4
-
15
-
-
76749161402
-
Bundle methods for regularized risk minimization
-
Teo, C. H., Vishwanthan, S. V. N., Smola, A. J., and Le, Q. V. Bundle methods for regularized risk minimization. JMLR, 11:311-365, 2010.
-
(2010)
JMLR
, vol.11
, pp. 311-365
-
-
Teo, C.H.1
Vishwanthan, S.V.N.2
Smola, A.J.3
Le, Q.V.4
-
16
-
-
24944537843
-
Large Margin Methods for Structured and Interdependent Output Variables
-
Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. Large Margin Methods for Structured and Interdependent Output Variables. JMLR, 6(2):1453, 2006.
-
(2006)
JMLR
, vol.6
, Issue.2
, pp. 1453
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
17
-
-
84857933762
-
Structured output regression for detection with partial truncation
-
Vedaldi, A. and Zisserman, A. Structured output regression for detection with partial truncation. In NIPS, 2009.
-
(2009)
NIPS
-
-
Vedaldi, A.1
Zisserman, A.2
-
18
-
-
80052913382
-
A discriminative latent model of object classes and attributes
-
Wang, Y. and Mori, G. A discriminative latent model of object classes and attributes. In ECCV, 2010.
-
(2010)
ECCV
-
-
Wang, Y.1
Mori, G.2
-
19
-
-
33749242077
-
Discriminative unsupervised learning of structured predictors
-
Xu, L., Wilkinson, D., Southey, F., and Schuurmans, D. Discriminative unsupervised learning of structured predictors. In ICML, 2006.
-
(2006)
ICML
-
-
Xu, L.1
Wilkinson, D.2
Southey, F.3
Schuurmans, D.4
-
20
-
-
71149086466
-
Learning Structural SVMs with Latent Variables
-
Yu, C. N. J. and Joachims, T. Learning Structural SVMs with Latent Variables. In ICML, 2009.
-
(2009)
ICML
-
-
Yu, C.N.J.1
Joachims, T.2
-
21
-
-
0037686659
-
The Concave-Convex Procedure
-
Yuille, A. L. and Rangarajan, A. The Concave-Convex Procedure. Neural Comput, 15(4):915-936, 2003.
-
(2003)
Neural Comput
, vol.15
, Issue.4
, pp. 915-936
-
-
Yuille, A.L.1
Rangarajan, A.2
-
22
-
-
26944483874
-
Statistical Analysis of Some Multi-category Large Margin Classification Methods
-
Zhang, T. Statistical Analysis of Some Multi-category Large Margin Classification Methods. JMLR, 5:1225-1251, 2004.
-
(2004)
JMLR
, vol.5
, pp. 1225-1251
-
-
Zhang, T.1
-
23
-
-
77955986466
-
Latent hierarchical structural learning for object detection
-
Zhu, L. L., Chen, Y., Yuille, A., and Freeman, W. Latent hierarchical structural learning for object detection. In CVPR, 2010.
-
(2010)
CVPR
-
-
Zhu, L.L.1
Chen, Y.2
Yuille, A.3
Freeman, W.4
-
24
-
-
77956547273
-
Transductive support vector machines for structured variables
-
Zien, A., Brefeld, U., and Scheffer, T. Transductive support vector machines for structured variables. In ICML, 2007.
-
(2007)
ICML
-
-
Zien, A.1
Brefeld, U.2
Scheffer, T.3
|