메뉴 건너뛰기




Volumn 2, Issue , 2012, Pages 1519-1526

Structured learning from partial annotations

Author keywords

[No Author keywords available]

Indexed keywords

CONCAVE-CONVEX PROCEDURE; EMPIRICAL COMPARISON; GROUND TRUTH; OPTIMIZATION PROBLEMS; STRUCTURED LEARNING; TRAINING SETS; VARIABLE NUMBER;

EID: 84867130315     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (23)

References (24)
  • 1
    • 38349091259 scopus 로고    scopus 로고
    • Maximum margin semi-supervised learning for structured variables
    • Altun, Y., McAllester, D., and Belkin, M. Maximum margin semi-supervised learning for structured variables. In NIPS, 2006.
    • (2006) NIPS
    • Altun, Y.1    McAllester, D.2    Belkin, M.3
  • 3
    • 79960111667 scopus 로고    scopus 로고
    • Learning from Partial Labels
    • Cour, T., Sapp, B., and Taskar, B. Learning from Partial Labels. JMLR, 12:1225-1261, 2011.
    • (2011) JMLR , vol.12 , pp. 1225-1261
    • Cour, T.1    Sapp, B.2    Taskar, B.3
  • 5
    • 85126493478 scopus 로고    scopus 로고
    • Learning from partially annotated sequences
    • Fernandes, E. and Brefeld, U. Learning from partially annotated sequences. In ECML/PKDD, 2011.
    • (2011) ECML/PKDD
    • Fernandes, E.1    Brefeld, U.2
  • 7
    • 85162034192 scopus 로고    scopus 로고
    • Learning from Candidate Labeling Sets
    • Jie, L. and Orabona, F. Learning from Candidate Labeling Sets. In NIPS, 2010.
    • (2010) NIPS
    • Jie, L.1    Orabona, F.2
  • 8
    • 85156212629 scopus 로고    scopus 로고
    • Learning with Multiple Labels
    • Jin, R. and Ghahramani, Z. Learning with Multiple Labels. In NIPS, 2002.
    • (2002) NIPS
    • Jin, R.1    Ghahramani, Z.2
  • 9
    • 0025208765 scopus 로고
    • Proximity control in bundle methods for convex nondifferentiable minimization
    • Kiwiel, K. C. Proximity control in bundle methods for convex nondifferentiable minimization. Math Program, 46(1):105-122, 1990.
    • (1990) Math Program , vol.46 , Issue.1 , pp. 105-122
    • Kiwiel, K.C.1
  • 10
    • 85157973211 scopus 로고    scopus 로고
    • Learning to model spatial dependency: Semi-supervised discriminative random fields
    • Lee, C. H., Wang, S., Jiao, F., Schuurmans, D., and Greiner, R. Learning to model spatial dependency: Semi-supervised discriminative random fields. In NIPS, 2006.
    • (2006) NIPS
    • Lee, C.H.1    Wang, S.2    Jiao, F.3    Schuurmans, D.4    Greiner, R.5
  • 11
    • 84867113846 scopus 로고    scopus 로고
    • Structured learning for cell tracking
    • Lou, X. and Hamprecht, F. A. Structured learning for cell tracking. In NIPS, 2011.
    • (2011) NIPS
    • Lou, X.1    Hamprecht, F.A.2
  • 12
    • 85162419778 scopus 로고    scopus 로고
    • Generalization Bounds and Consistency for Latent Structural Probit and Ramp Loss
    • McAllester, D. and Keshet, J. Generalization Bounds and Consistency for Latent Structural Probit and Ramp Loss. In NIPS, 2011.
    • (2011) NIPS
    • McAllester, D.1    Keshet, J.2
  • 13
    • 85162488701 scopus 로고    scopus 로고
    • Direct loss minimization for structured prediction
    • McAllester, David, Hazan, Tamir, and Keshet, Joseph. Direct loss minimization for structured prediction. In NIPS, 2010.
    • (2010) NIPS
    • McAllester, D.1    Hazan, T.2    Keshet, J.3
  • 14
    • 85162059405 scopus 로고    scopus 로고
    • More data means less inference: A pseudo-max approach to structured learning
    • Sontag, D., Meshi, O., Jaakkola, T. S., and Globerson, A. More data means less inference: A pseudo-max approach to structured learning. In NIPS, 2010.
    • (2010) NIPS
    • Sontag, D.1    Meshi, O.2    Jaakkola, T.S.3    Globerson, A.4
  • 15
    • 76749161402 scopus 로고    scopus 로고
    • Bundle methods for regularized risk minimization
    • Teo, C. H., Vishwanthan, S. V. N., Smola, A. J., and Le, Q. V. Bundle methods for regularized risk minimization. JMLR, 11:311-365, 2010.
    • (2010) JMLR , vol.11 , pp. 311-365
    • Teo, C.H.1    Vishwanthan, S.V.N.2    Smola, A.J.3    Le, Q.V.4
  • 16
    • 24944537843 scopus 로고    scopus 로고
    • Large Margin Methods for Structured and Interdependent Output Variables
    • Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. Large Margin Methods for Structured and Interdependent Output Variables. JMLR, 6(2):1453, 2006.
    • (2006) JMLR , vol.6 , Issue.2 , pp. 1453
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 17
    • 84857933762 scopus 로고    scopus 로고
    • Structured output regression for detection with partial truncation
    • Vedaldi, A. and Zisserman, A. Structured output regression for detection with partial truncation. In NIPS, 2009.
    • (2009) NIPS
    • Vedaldi, A.1    Zisserman, A.2
  • 18
    • 80052913382 scopus 로고    scopus 로고
    • A discriminative latent model of object classes and attributes
    • Wang, Y. and Mori, G. A discriminative latent model of object classes and attributes. In ECCV, 2010.
    • (2010) ECCV
    • Wang, Y.1    Mori, G.2
  • 19
    • 33749242077 scopus 로고    scopus 로고
    • Discriminative unsupervised learning of structured predictors
    • Xu, L., Wilkinson, D., Southey, F., and Schuurmans, D. Discriminative unsupervised learning of structured predictors. In ICML, 2006.
    • (2006) ICML
    • Xu, L.1    Wilkinson, D.2    Southey, F.3    Schuurmans, D.4
  • 20
    • 71149086466 scopus 로고    scopus 로고
    • Learning Structural SVMs with Latent Variables
    • Yu, C. N. J. and Joachims, T. Learning Structural SVMs with Latent Variables. In ICML, 2009.
    • (2009) ICML
    • Yu, C.N.J.1    Joachims, T.2
  • 21
    • 0037686659 scopus 로고    scopus 로고
    • The Concave-Convex Procedure
    • Yuille, A. L. and Rangarajan, A. The Concave-Convex Procedure. Neural Comput, 15(4):915-936, 2003.
    • (2003) Neural Comput , vol.15 , Issue.4 , pp. 915-936
    • Yuille, A.L.1    Rangarajan, A.2
  • 22
    • 26944483874 scopus 로고    scopus 로고
    • Statistical Analysis of Some Multi-category Large Margin Classification Methods
    • Zhang, T. Statistical Analysis of Some Multi-category Large Margin Classification Methods. JMLR, 5:1225-1251, 2004.
    • (2004) JMLR , vol.5 , pp. 1225-1251
    • Zhang, T.1
  • 23
    • 77955986466 scopus 로고    scopus 로고
    • Latent hierarchical structural learning for object detection
    • Zhu, L. L., Chen, Y., Yuille, A., and Freeman, W. Latent hierarchical structural learning for object detection. In CVPR, 2010.
    • (2010) CVPR
    • Zhu, L.L.1    Chen, Y.2    Yuille, A.3    Freeman, W.4
  • 24
    • 77956547273 scopus 로고    scopus 로고
    • Transductive support vector machines for structured variables
    • Zien, A., Brefeld, U., and Scheffer, T. Transductive support vector machines for structured variables. In ICML, 2007.
    • (2007) ICML
    • Zien, A.1    Brefeld, U.2    Scheffer, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.