메뉴 건너뛰기




Volumn 23, Issue 8, 2014, Pages 802-811

Propensity score balance measures in pharmacoepidemiology: A simulation study

Author keywords

Balance measure; Confounding; Model selection; Pharmacoepidemiology; Propensity score

Indexed keywords

ARTICLE; CORRELATION COEFFICIENT; HUMAN; MONTE CARLO METHOD; PHARMACOEPIDEMIOLOGY; PREVALENCE; PRIORITY JOURNAL; PROPENSITY SCORE; SAMPLE SIZE; COMPUTER SIMULATION; NONPARAMETRIC TEST; PROCEDURES; STATISTICAL BIAS; STATISTICAL MODEL;

EID: 84905032256     PISSN: 10538569     EISSN: 10991557     Source Type: Journal    
DOI: 10.1002/pds.3574     Document Type: Article
Times cited : (50)

References (35)
  • 1
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. J Am Stat Assoc 1984; 79: 516-524.
    • (1984) J Am Stat Assoc , vol.79 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 2
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70(1): 41-55.
    • (1983) Biometrika , vol.70 , Issue.1 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 3
    • 59649105576 scopus 로고    scopus 로고
    • Goodness-of-fit diagnostics for the propensity score model when estimating treatment effects using covariate adjustment with the propensity score
    • Austin PC. Goodness-of-fit diagnostics for the propensity score model when estimating treatment effects using covariate adjustment with the propensity score. Pharmacoepidemiol Drug Saf 2008; 17(12): 1202-1217.
    • (2008) Pharmacoepidemiol Drug Saf , vol.17 , Issue.12 , pp. 1202-1217
    • Austin, P.C.1
  • 4
    • 59649108931 scopus 로고    scopus 로고
    • Assessing balance in measured baseline covariates when using many-to-one matching on the propensity score
    • Austin PC. Assessing balance in measured baseline covariates when using many-to-one matching on the propensity score. Pharmacoepidemiol Drug Saf 2008; 17(12): 1218-1225.
    • (2008) Pharmacoepidemiol Drug Saf , vol.17 , Issue.12 , pp. 1218-1225
    • Austin, P.C.1
  • 5
    • 10844259913 scopus 로고    scopus 로고
    • Principles for modelling propensity scores in medical research: a systematic literature review
    • Weitzen S, Lapane KL, Toledano AY, et al. Principles for modelling propensity scores in medical research: a systematic literature review. Pharmacoepidemiol Drug Saf 2004; 13(12): 841-853.
    • (2004) Pharmacoepidemiol Drug Saf , vol.13 , Issue.12 , pp. 841-853
    • Weitzen, S.1    Lapane, K.L.2    Toledano, A.Y.3
  • 6
    • 0029959044 scopus 로고    scopus 로고
    • Matching using estimated propensity scores: relating theory to practice
    • Rubin DB, Thomas N. Matching using estimated propensity scores: relating theory to practice. Biometrics 1996; 52(1): 249-264.
    • (1996) Biometrics , vol.52 , Issue.1 , pp. 249-264
    • Rubin, D.B.1    Thomas, N.2
  • 7
    • 33645236260 scopus 로고    scopus 로고
    • Variable selection for propensity score models
    • Brookhart MA, Schneeweiss S, Rothman KJ, et al. Variable selection for propensity score models. Am J Epidemiol 2006; 163(12): 1149-1156.
    • (2006) Am J Epidemiol , vol.163 , Issue.12 , pp. 1149-1156
    • Brookhart, M.A.1    Schneeweiss, S.2    Rothman, K.J.3
  • 8
    • 84904998141 scopus 로고    scopus 로고
    • Do instrumental variables belong in propensity scores? NBER Technical Working Paper No. 343. The National Bureau of Economic Research: Cambridge, MA
    • Bhattacharya J, Vogt WB. Do instrumental variables belong in propensity scores? NBER Technical Working Paper No. 343. The National Bureau of Economic Research: Cambridge, MA, 2007.
    • (2007)
    • Bhattacharya, J.1    Vogt, W.B.2
  • 9
    • 80053281276 scopus 로고    scopus 로고
    • Effects of adjusting for instrumental variables on bias and precision of effect estimates
    • Myers JA, Rassen JA, Gagne JJ, et al. Effects of adjusting for instrumental variables on bias and precision of effect estimates. Am J Epidemiol 2011; 174(11): 1213-1222.
    • (2011) Am J Epidemiol , vol.174 , Issue.11 , pp. 1213-1222
    • Myers, J.A.1    Rassen, J.A.2    Gagne, J.J.3
  • 10
    • 84856039288 scopus 로고    scopus 로고
    • Invited commentary: understanding bias amplification
    • Pearl J. Invited commentary: understanding bias amplification. Am J Epidemiol 2011; 174(11): 1223-1227.
    • (2011) Am J Epidemiol , vol.174 , Issue.11 , pp. 1223-1227
    • Pearl, J.1
  • 11
    • 77956888769 scopus 로고
    • Causal diagrams for empirical research
    • Pearl J. Causal diagrams for empirical research. Biometrika 1995; 82(4): 669-688.
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 669-688
    • Pearl, J.1
  • 12
    • 80555123073 scopus 로고    scopus 로고
    • Measuring balance and model selection in propensity score methods
    • Belitser SV, Martens EP, Pestman WR, et al. Measuring balance and model selection in propensity score methods. Pharmacoepidemiol Drug Saf 2011; 20(11): 1115-1129.
    • (2011) Pharmacoepidemiol Drug Saf , vol.20 , Issue.11 , pp. 1115-1129
    • Belitser, S.V.1    Martens, E.P.2    Pestman, W.R.3
  • 13
    • 80555131090 scopus 로고    scopus 로고
    • Balance measures for propensity score methods: a clinical example on beta-agonist use and the risk of myocardial infarction
    • Groenwold RHH, Vries F, Boer A, et al. Balance measures for propensity score methods: a clinical example on beta-agonist use and the risk of myocardial infarction. Pharmacoepidemiol Drug Saf 2011; 20(11): 1130-1137.
    • (2011) Pharmacoepidemiol Drug Saf , vol.20 , Issue.11 , pp. 1130-1137
    • Groenwold, R.H.H.1    Vries, F.2    Boer, A.3
  • 14
    • 70449365700 scopus 로고    scopus 로고
    • Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples
    • Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med 2009; 28(25): 3083-3107.
    • (2009) Stat Med , vol.28 , Issue.25 , pp. 3083-3107
    • Austin, P.C.1
  • 15
    • 0000634854 scopus 로고
    • Use of the Kolmogorov-Smirnov, Cramér-von Mises and related statistics without extensive tables
    • Series B (Methodological)
    • Stephens MA. Use of the Kolmogorov-Smirnov, Cramér-von Mises and related statistics without extensive tables. J Royal Stat Soc Series B (Methodological) 1970; 32(1): 115-122.
    • (1970) J Royal Stat Soc , vol.32 , Issue.1 , pp. 115-122
    • Stephens, M.A.1
  • 18
    • 0035970139 scopus 로고    scopus 로고
    • Non-parametric estimates of overlap
    • Stine RA, Heyse JF. Non-parametric estimates of overlap. Stat Med 2001; 20(2): 215-236.
    • (2001) Stat Med , vol.20 , Issue.2 , pp. 215-236
    • Stine, R.A.1    Heyse, J.F.2
  • 19
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study
    • Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Stat Med 2007; 26(4): 734-753.
    • (2007) Stat Med , vol.26 , Issue.4 , pp. 734-753
    • Austin, P.C.1    Grootendorst, P.2    Anderson, G.M.3
  • 22
    • 34249863765 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal odds ratios
    • Austin PC. The performance of different propensity score methods for estimating marginal odds ratios. Stat Med 2007; 26(16): 3078-3094.
    • (2007) Stat Med , vol.26 , Issue.16 , pp. 3078-3094
    • Austin, P.C.1
  • 23
    • 33846813595 scopus 로고    scopus 로고
    • Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study
    • Austin PC, Grootendorst P, Normand SLT, et al. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Stat Med 2007; 26(4): 754-768.
    • (2007) Stat Med , vol.26 , Issue.4 , pp. 754-768
    • Austin, P.C.1    Grootendorst, P.2    Normand, S.L.T.3
  • 24
    • 18844452973 scopus 로고    scopus 로고
    • Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review
    • Shah BR, Laupacis A, Hux JE, et al. Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review. J Clin Epidemiol 2005; 58(6): 550-559.
    • (2005) J Clin Epidemiol , vol.58 , Issue.6 , pp. 550-559
    • Shah, B.R.1    Laupacis, A.2    Hux, J.E.3
  • 25
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team. R Foundation for Statistical Computing: Vienna, Austria, ISBN 3-900051-07-0, URL
    • R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2012. ISBN 3-900051-07-0, URL http://www.R-project.org/
    • (2012) R: A Language and Environment for Statistical Computing
  • 26
    • 79959558713 scopus 로고    scopus 로고
    • The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration
    • Patrick AR, Schneeweiss S, Brookhart MA, et al. The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration. Pharmacoepidemiol Drug Saf 2011; 20(6): 551-559.
    • (2011) Pharmacoepidemiol Drug Saf , vol.20 , Issue.6 , pp. 551-559
    • Patrick, A.R.1    Schneeweiss, S.2    Brookhart, M.A.3
  • 27
    • 80053137535 scopus 로고    scopus 로고
    • On a class of bias-amplifying variables that endanger effect estimates
    • In, Grünwald P, Spirtes P (eds). Association for Uncertainty in Artificial Intelligence: Corvallis, OR
    • Pearl J. On a class of bias-amplifying variables that endanger effect estimates. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI 2010), Grünwald P, Spirtes P (eds). Association for Uncertainty in Artificial Intelligence: Corvallis, OR, 2010; 425-432.
    • (2010) Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI 2010) , pp. 425-432
    • Pearl, J.1
  • 28
    • 77953632279 scopus 로고    scopus 로고
    • Confounding control in healthcare database research: challenges and potential approaches
    • Brookhart MA, Stürmer T, Glynn RJ, et al. Confounding control in healthcare database research: challenges and potential approaches. Med Care 2010; 48(6 suppl): S114-S120.
    • (2010) Med Care , vol.48 , Issue.6 SUPPL
    • Brookhart, M.A.1    Stürmer, T.2    Glynn, R.J.3
  • 29
    • 0035761763 scopus 로고    scopus 로고
    • Using propensity scores to help design observational studies: application to the tobacco litigation
    • Rubin DB. Using propensity scores to help design observational studies: application to the tobacco litigation. Health Serv Outcomes Res Methodol 2001; 2(3): 169-188.
    • (2001) Health Serv Outcomes Res Methodol , vol.2 , Issue.3 , pp. 169-188
    • Rubin, D.B.1
  • 30
    • 33846253571 scopus 로고    scopus 로고
    • The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials
    • Rubin DB. The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Stat Med 2007; 26(1): 20-36.
    • (2007) Stat Med , vol.26 , Issue.1 , pp. 20-36
    • Rubin, D.B.1
  • 31
    • 0002864224 scopus 로고    scopus 로고
    • Confounding and collapsibility in causal inference
    • Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. Stat Sci 1999; 14(1): 29-46.
    • (1999) Stat Sci , vol.14 , Issue.1 , pp. 29-46
    • Greenland, S.1    Robins, J.M.2    Pearl, J.3
  • 32
    • 77956891487 scopus 로고
    • Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates
    • Gail MH, Wieand S, Piantadosi S. Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika 1984; 71(3): 431-444.
    • (1984) Biometrika , vol.71 , Issue.3 , pp. 431-444
    • Gail, M.H.1    Wieand, S.2    Piantadosi, S.3
  • 33
    • 77953607621 scopus 로고    scopus 로고
    • Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression
    • Westreich D, Lessler J, Funk MJ. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. J Clin Epidemiol 2010; 63(8): 826-833.
    • (2010) J Clin Epidemiol , vol.63 , Issue.8 , pp. 826-833
    • Westreich, D.1    Lessler, J.2    Funk, M.J.3
  • 34
    • 79953304087 scopus 로고    scopus 로고
    • Weight trimming and propensity score weighting
    • E18174.
    • Lee BK, Lessler J, Stuart EA. Weight trimming and propensity score weighting. PLoS One 2011; 6(3): E18174.
    • (2011) PLoS One , vol.6 , Issue.3
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 35
    • 46349084991 scopus 로고    scopus 로고
    • Evaluating uses of data mining techniques in propensity score estimation: a simulation study
    • Setoguchi S, Schneeweiss S, Brookhart MA, et al. Evaluating uses of data mining techniques in propensity score estimation: a simulation study. Pharmacoepidemiol Drug Saf 2008; 17(6): 546-555.
    • (2008) Pharmacoepidemiol Drug Saf , vol.17 , Issue.6 , pp. 546-555
    • Setoguchi, S.1    Schneeweiss, S.2    Brookhart, M.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.