-
1
-
-
84949193513
-
Reducing bias in observational studies using subclassification on the propensity score
-
Rosenbaum PR, Rubin DB. Reducing bias in observational studies using subclassification on the propensity score. J Am Stat Assoc 1984; 79: 516-524.
-
(1984)
J Am Stat Assoc
, vol.79
, pp. 516-524
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
2
-
-
77951622706
-
The central role of the propensity score in observational studies for causal effects
-
Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70(1): 41-55.
-
(1983)
Biometrika
, vol.70
, Issue.1
, pp. 41-55
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
3
-
-
59649105576
-
Goodness-of-fit diagnostics for the propensity score model when estimating treatment effects using covariate adjustment with the propensity score
-
Austin PC. Goodness-of-fit diagnostics for the propensity score model when estimating treatment effects using covariate adjustment with the propensity score. Pharmacoepidemiol Drug Saf 2008; 17(12): 1202-1217.
-
(2008)
Pharmacoepidemiol Drug Saf
, vol.17
, Issue.12
, pp. 1202-1217
-
-
Austin, P.C.1
-
4
-
-
59649108931
-
Assessing balance in measured baseline covariates when using many-to-one matching on the propensity score
-
Austin PC. Assessing balance in measured baseline covariates when using many-to-one matching on the propensity score. Pharmacoepidemiol Drug Saf 2008; 17(12): 1218-1225.
-
(2008)
Pharmacoepidemiol Drug Saf
, vol.17
, Issue.12
, pp. 1218-1225
-
-
Austin, P.C.1
-
5
-
-
10844259913
-
Principles for modelling propensity scores in medical research: a systematic literature review
-
Weitzen S, Lapane KL, Toledano AY, et al. Principles for modelling propensity scores in medical research: a systematic literature review. Pharmacoepidemiol Drug Saf 2004; 13(12): 841-853.
-
(2004)
Pharmacoepidemiol Drug Saf
, vol.13
, Issue.12
, pp. 841-853
-
-
Weitzen, S.1
Lapane, K.L.2
Toledano, A.Y.3
-
6
-
-
0029959044
-
Matching using estimated propensity scores: relating theory to practice
-
Rubin DB, Thomas N. Matching using estimated propensity scores: relating theory to practice. Biometrics 1996; 52(1): 249-264.
-
(1996)
Biometrics
, vol.52
, Issue.1
, pp. 249-264
-
-
Rubin, D.B.1
Thomas, N.2
-
7
-
-
33645236260
-
Variable selection for propensity score models
-
Brookhart MA, Schneeweiss S, Rothman KJ, et al. Variable selection for propensity score models. Am J Epidemiol 2006; 163(12): 1149-1156.
-
(2006)
Am J Epidemiol
, vol.163
, Issue.12
, pp. 1149-1156
-
-
Brookhart, M.A.1
Schneeweiss, S.2
Rothman, K.J.3
-
8
-
-
84904998141
-
-
Do instrumental variables belong in propensity scores? NBER Technical Working Paper No. 343. The National Bureau of Economic Research: Cambridge, MA
-
Bhattacharya J, Vogt WB. Do instrumental variables belong in propensity scores? NBER Technical Working Paper No. 343. The National Bureau of Economic Research: Cambridge, MA, 2007.
-
(2007)
-
-
Bhattacharya, J.1
Vogt, W.B.2
-
9
-
-
80053281276
-
Effects of adjusting for instrumental variables on bias and precision of effect estimates
-
Myers JA, Rassen JA, Gagne JJ, et al. Effects of adjusting for instrumental variables on bias and precision of effect estimates. Am J Epidemiol 2011; 174(11): 1213-1222.
-
(2011)
Am J Epidemiol
, vol.174
, Issue.11
, pp. 1213-1222
-
-
Myers, J.A.1
Rassen, J.A.2
Gagne, J.J.3
-
10
-
-
84856039288
-
Invited commentary: understanding bias amplification
-
Pearl J. Invited commentary: understanding bias amplification. Am J Epidemiol 2011; 174(11): 1223-1227.
-
(2011)
Am J Epidemiol
, vol.174
, Issue.11
, pp. 1223-1227
-
-
Pearl, J.1
-
11
-
-
77956888769
-
Causal diagrams for empirical research
-
Pearl J. Causal diagrams for empirical research. Biometrika 1995; 82(4): 669-688.
-
(1995)
Biometrika
, vol.82
, Issue.4
, pp. 669-688
-
-
Pearl, J.1
-
12
-
-
80555123073
-
Measuring balance and model selection in propensity score methods
-
Belitser SV, Martens EP, Pestman WR, et al. Measuring balance and model selection in propensity score methods. Pharmacoepidemiol Drug Saf 2011; 20(11): 1115-1129.
-
(2011)
Pharmacoepidemiol Drug Saf
, vol.20
, Issue.11
, pp. 1115-1129
-
-
Belitser, S.V.1
Martens, E.P.2
Pestman, W.R.3
-
13
-
-
80555131090
-
Balance measures for propensity score methods: a clinical example on beta-agonist use and the risk of myocardial infarction
-
Groenwold RHH, Vries F, Boer A, et al. Balance measures for propensity score methods: a clinical example on beta-agonist use and the risk of myocardial infarction. Pharmacoepidemiol Drug Saf 2011; 20(11): 1130-1137.
-
(2011)
Pharmacoepidemiol Drug Saf
, vol.20
, Issue.11
, pp. 1130-1137
-
-
Groenwold, R.H.H.1
Vries, F.2
Boer, A.3
-
14
-
-
70449365700
-
Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples
-
Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med 2009; 28(25): 3083-3107.
-
(2009)
Stat Med
, vol.28
, Issue.25
, pp. 3083-3107
-
-
Austin, P.C.1
-
15
-
-
0000634854
-
Use of the Kolmogorov-Smirnov, Cramér-von Mises and related statistics without extensive tables
-
Series B (Methodological)
-
Stephens MA. Use of the Kolmogorov-Smirnov, Cramér-von Mises and related statistics without extensive tables. J Royal Stat Soc Series B (Methodological) 1970; 32(1): 115-122.
-
(1970)
J Royal Stat Soc
, vol.32
, Issue.1
, pp. 115-122
-
-
Stephens, M.A.1
-
18
-
-
0035970139
-
Non-parametric estimates of overlap
-
Stine RA, Heyse JF. Non-parametric estimates of overlap. Stat Med 2001; 20(2): 215-236.
-
(2001)
Stat Med
, vol.20
, Issue.2
, pp. 215-236
-
-
Stine, R.A.1
Heyse, J.F.2
-
19
-
-
33846842327
-
A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study
-
Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Stat Med 2007; 26(4): 734-753.
-
(2007)
Stat Med
, vol.26
, Issue.4
, pp. 734-753
-
-
Austin, P.C.1
Grootendorst, P.2
Anderson, G.M.3
-
22
-
-
34249863765
-
The performance of different propensity score methods for estimating marginal odds ratios
-
Austin PC. The performance of different propensity score methods for estimating marginal odds ratios. Stat Med 2007; 26(16): 3078-3094.
-
(2007)
Stat Med
, vol.26
, Issue.16
, pp. 3078-3094
-
-
Austin, P.C.1
-
23
-
-
33846813595
-
Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study
-
Austin PC, Grootendorst P, Normand SLT, et al. Conditioning on the propensity score can result in biased estimation of common measures of treatment effect: a Monte Carlo study. Stat Med 2007; 26(4): 754-768.
-
(2007)
Stat Med
, vol.26
, Issue.4
, pp. 754-768
-
-
Austin, P.C.1
Grootendorst, P.2
Normand, S.L.T.3
-
24
-
-
18844452973
-
Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review
-
Shah BR, Laupacis A, Hux JE, et al. Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review. J Clin Epidemiol 2005; 58(6): 550-559.
-
(2005)
J Clin Epidemiol
, vol.58
, Issue.6
, pp. 550-559
-
-
Shah, B.R.1
Laupacis, A.2
Hux, J.E.3
-
25
-
-
84863304598
-
-
R Development Core Team. R Foundation for Statistical Computing: Vienna, Austria, ISBN 3-900051-07-0, URL
-
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2012. ISBN 3-900051-07-0, URL http://www.R-project.org/
-
(2012)
R: A Language and Environment for Statistical Computing
-
-
-
26
-
-
79959558713
-
The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration
-
Patrick AR, Schneeweiss S, Brookhart MA, et al. The implications of propensity score variable selection strategies in pharmacoepidemiology: an empirical illustration. Pharmacoepidemiol Drug Saf 2011; 20(6): 551-559.
-
(2011)
Pharmacoepidemiol Drug Saf
, vol.20
, Issue.6
, pp. 551-559
-
-
Patrick, A.R.1
Schneeweiss, S.2
Brookhart, M.A.3
-
27
-
-
80053137535
-
On a class of bias-amplifying variables that endanger effect estimates
-
In, Grünwald P, Spirtes P (eds). Association for Uncertainty in Artificial Intelligence: Corvallis, OR
-
Pearl J. On a class of bias-amplifying variables that endanger effect estimates. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI 2010), Grünwald P, Spirtes P (eds). Association for Uncertainty in Artificial Intelligence: Corvallis, OR, 2010; 425-432.
-
(2010)
Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI 2010)
, pp. 425-432
-
-
Pearl, J.1
-
28
-
-
77953632279
-
Confounding control in healthcare database research: challenges and potential approaches
-
Brookhart MA, Stürmer T, Glynn RJ, et al. Confounding control in healthcare database research: challenges and potential approaches. Med Care 2010; 48(6 suppl): S114-S120.
-
(2010)
Med Care
, vol.48
, Issue.6 SUPPL
-
-
Brookhart, M.A.1
Stürmer, T.2
Glynn, R.J.3
-
29
-
-
0035761763
-
Using propensity scores to help design observational studies: application to the tobacco litigation
-
Rubin DB. Using propensity scores to help design observational studies: application to the tobacco litigation. Health Serv Outcomes Res Methodol 2001; 2(3): 169-188.
-
(2001)
Health Serv Outcomes Res Methodol
, vol.2
, Issue.3
, pp. 169-188
-
-
Rubin, D.B.1
-
30
-
-
33846253571
-
The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials
-
Rubin DB. The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials. Stat Med 2007; 26(1): 20-36.
-
(2007)
Stat Med
, vol.26
, Issue.1
, pp. 20-36
-
-
Rubin, D.B.1
-
31
-
-
0002864224
-
Confounding and collapsibility in causal inference
-
Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. Stat Sci 1999; 14(1): 29-46.
-
(1999)
Stat Sci
, vol.14
, Issue.1
, pp. 29-46
-
-
Greenland, S.1
Robins, J.M.2
Pearl, J.3
-
32
-
-
77956891487
-
Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates
-
Gail MH, Wieand S, Piantadosi S. Biased estimates of treatment effect in randomized experiments with nonlinear regressions and omitted covariates. Biometrika 1984; 71(3): 431-444.
-
(1984)
Biometrika
, vol.71
, Issue.3
, pp. 431-444
-
-
Gail, M.H.1
Wieand, S.2
Piantadosi, S.3
-
33
-
-
77953607621
-
Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression
-
Westreich D, Lessler J, Funk MJ. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. J Clin Epidemiol 2010; 63(8): 826-833.
-
(2010)
J Clin Epidemiol
, vol.63
, Issue.8
, pp. 826-833
-
-
Westreich, D.1
Lessler, J.2
Funk, M.J.3
-
34
-
-
79953304087
-
Weight trimming and propensity score weighting
-
E18174.
-
Lee BK, Lessler J, Stuart EA. Weight trimming and propensity score weighting. PLoS One 2011; 6(3): E18174.
-
(2011)
PLoS One
, vol.6
, Issue.3
-
-
Lee, B.K.1
Lessler, J.2
Stuart, E.A.3
-
35
-
-
46349084991
-
Evaluating uses of data mining techniques in propensity score estimation: a simulation study
-
Setoguchi S, Schneeweiss S, Brookhart MA, et al. Evaluating uses of data mining techniques in propensity score estimation: a simulation study. Pharmacoepidemiol Drug Saf 2008; 17(6): 546-555.
-
(2008)
Pharmacoepidemiol Drug Saf
, vol.17
, Issue.6
, pp. 546-555
-
-
Setoguchi, S.1
Schneeweiss, S.2
Brookhart, M.A.3
|