메뉴 건너뛰기




Volumn 48, Issue 6 SUPPL., 2010, Pages

Confounding control in healthcare database research: Challenges and potential approaches

Author keywords

Confounding; Pharmacoepidemiology; Propensity scores; Unmeasured confounding; Variable selection

Indexed keywords

COGNITIVE DEFECT; CONFOUNDING VARIABLE; CRITICALLY ILL PATIENT; DATA BASE; DISEASE SEVERITY; FUNCTIONAL STATUS; HEALTH CARE ACCESS; HEALTH CARE UTILIZATION; MEDICAL PRACTICE; PHARMACOEPIDEMIOLOGY; PRESCRIPTION; PRIORITY JOURNAL; PROPHYLAXIS; RESEARCH; REVIEW; SENSITIVITY ANALYSIS; STATISTICAL MODEL; ARTICLE; COGNITION; EPIDEMIOLOGY; FACTUAL DATABASE; HEALTH SERVICE; HOSPITALIZATION; HUMAN; PATIENT COMPLIANCE; PATIENT SELECTION; STATISTICS; TREATMENT OUTCOME;

EID: 77953632279     PISSN: 00257079     EISSN: None     Source Type: Journal    
DOI: 10.1097/MLR.0b013e3181dbebe3     Document Type: Review
Times cited : (309)

References (62)
  • 1
    • 18044398603 scopus 로고    scopus 로고
    • A review of uses of health care utilization databases for epidemiologic research on therapeutics
    • Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic research on therapeutics. J Clin Epidemiol. 2005;58:323-337.
    • (2005) J Clin Epidemiol , vol.58 , pp. 323-337
    • Schneeweiss, S.1    Avorn, J.2
  • 2
    • 77956888769 scopus 로고
    • Causal diagrams for empirical research
    • Pearl J. Causal diagrams for empirical research. Biometrika. 1995;82: 669-688.
    • (1995) Biometrika , vol.82 , pp. 669-688
    • Pearl, J.1
  • 3
    • 0032924944 scopus 로고    scopus 로고
    • Causal diagrams for epidemiologic research
    • Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10:37-48.
    • (1999) Epidemiology , vol.10 , pp. 37-48
    • Greenland, S.1    Pearl, J.2    Robins, J.M.3
  • 4
    • 0030187757 scopus 로고    scopus 로고
    • Confounding by indication
    • Walker AM. Confounding by indication. Epidemiology. 1996;7:335-336.
    • (1996) Epidemiology , vol.7 , pp. 335-336
    • Walker, A.M.1
  • 5
    • 70649113093 scopus 로고    scopus 로고
    • A most stubborn bias: No adjustment method fully resolves confounding by indication in observational studies
    • Bosco JL, Silliman RA, Thwin SS, et al. A most stubborn bias: no adjustment method fully resolves confounding by indication in observational studies. J Clin Epidemiol. 2010;63:64-74.
    • (2010) J Clin Epidemiol , vol.63 , pp. 64-74
    • Bosco, J.L.1    Silliman, R.A.2    Thwin, S.S.3
  • 6
    • 24144477605 scopus 로고    scopus 로고
    • Adjusting effect estimates for unmeasured confounding with validation data using propensity score calibration
    • Sturmer T, Schneeweiss S, Avorn J, et al. Adjusting effect estimates for unmeasured confounding with validation data using propensity score calibration. Am J Epidemiol. 2005;162:279-289.
    • (2005) Am J Epidemiol , vol.162 , pp. 279-289
    • Sturmer, T.1    Schneeweiss, S.2    Avorn, J.3
  • 7
    • 33645815277 scopus 로고    scopus 로고
    • Evidence of bias in estimates of influenza vaccine effectiveness in seniors
    • Jackson LA, Jackson ML, Nelson JC, et al. Evidence of bias in estimates of influenza vaccine effectiveness in seniors. Int J Epidemiol. 2006;35:337-344.
    • (2006) Int J Epidemiol , vol.35 , pp. 337-344
    • Jackson, L.A.1    Jackson, M.L.2    Nelson, J.C.3
  • 8
    • 33645829057 scopus 로고    scopus 로고
    • Functional status is a confounder of the association of influenza vaccine and risk of all cause mortality in seniors
    • Jackson LA, Nelson JC, Benson P, et al. Functional status is a confounder of the association of influenza vaccine and risk of all cause mortality in seniors. Int JEpidemiol. 2006;35:345-352.
    • (2006) Int JEpidemiol , vol.35 , pp. 345-352
    • Jackson, L.A.1    Nelson, J.C.2    Benson, P.3
  • 9
    • 0035211416 scopus 로고    scopus 로고
    • Paradoxical relations of drug treatment with mortality in older persons
    • Glynn RJ, Knight EL, Levin R, et al. Paradoxical relations of drug treatment with mortality in older persons. Epidemiology. 2001;12:682-689.
    • (2001) Epidemiology , vol.12 , pp. 682-689
    • Glynn, R.J.1    Knight, E.L.2    Levin, R.3
  • 10
    • 33645225508 scopus 로고    scopus 로고
    • Selective prescribing led to overestimation of the benefits of lipid-lowering drugs
    • Glynn RJ, Schneeweiss S, Wang PS, et al. Selective prescribing led to overestimation of the benefits of lipid-lowering drugs. J Clin Epidemiol. 2006;59:819-828.
    • (2006) J Clin Epidemiol , vol.59 , pp. 819-828
    • Glynn, R.J.1    Schneeweiss, S.2    Wang, P.S.3
  • 11
    • 53749100169 scopus 로고    scopus 로고
    • Associations of kidney function with cardiovascular medication use after myocardial infarction
    • Winkelmayer WC, Levin R, Setoguchi S. Associations of kidney function with cardiovascular medication use after myocardial infarction. Clin J Am Soc Nephrol. 2008;3:1415-1422.
    • (2008) Clin J Am Soc Nephrol , vol.3 , pp. 1415-1422
    • Winkelmayer, W.C.1    Levin, R.2    Setoguchi, S.3
  • 12
    • 28844474002 scopus 로고    scopus 로고
    • Adherence and outcomes: It's more than taking the pills
    • White HD. Adherence and outcomes: it's more than taking the pills. Lancet. 2005; 366:1989-1991.
    • (2005) Lancet , vol.366 , pp. 1989-1991
    • White, H.D.1
  • 13
    • 34547670103 scopus 로고    scopus 로고
    • Adherence to lipid-lowering therapy and the use of preventive health services: An investigation of the healthy user effect
    • Brookhart MA, Patrick AR, Dormuth C, et al. Adherence to lipid- lowering therapy and the use of preventive health services: an investigation of the healthy user effect. Am JEpidemiol. 2007;166:348-354.
    • (2007) Am JEpidemiol , vol.166 , pp. 348-354
    • Brookhart, M.A.1    Patrick, A.R.2    Dormuth, C.3
  • 14
    • 33745928735 scopus 로고    scopus 로고
    • A meta-analysis of the association between adherence to drug therapy and mortality
    • Simpson SH, Eurich DT, Majumdar SR, et al. A meta-analysis of the association between adherence to drug therapy and mortality. BMJ. 2006;333:15.
    • (2006) BMJ , vol.333 , pp. 15
    • Simpson, S.H.1    Eurich, D.T.2    Majumdar, S.R.3
  • 15
    • 3242879259 scopus 로고    scopus 로고
    • Agreement between GPRD smoking data: A survey of general practitioners and a population-based survey
    • Lewis JD, Brensinger C. Agreement between GPRD smoking data: a survey of general practitioners and a population-based survey. Phar- macoepidemiol Drug Saf. 2004;13:437-441.
    • (2004) Phar- Macoepidemiol Drug Saf , vol.13 , pp. 437-441
    • Lewis, J.D.1    Brensinger, C.2
  • 16
    • 65449149106 scopus 로고    scopus 로고
    • Statin adherence and risk of accidents. A cautionary tale
    • Dormuth CR, Patrick AR, Shrank WH, et al. Statin adherence and risk of accidents. A cautionary tale. Circulation. 2009;119:2051-2057.
    • (2009) Circulation , vol.119 , pp. 2051-2057
    • Dormuth, C.R.1    Patrick, A.R.2    Shrank, W.H.3
  • 17
    • 0026553703 scopus 로고
    • The accuracy of Medicare's hospital claims data: Progress has been made, but problems remain
    • Fisher ES, Whaley FS, Krushat WM, et al. The accuracy of Medicare's hospital claims data: progress has been made, but problems remain. Am J Public Health. 1992;82:243-248.
    • (1992) Am J Public Health , vol.82 , pp. 243-248
    • Fisher, E.S.1    Whaley, F.S.2    Krushat, W.M.3
  • 18
    • 0026588103 scopus 로고
    • Comorbidities, complications, and coding bias. Does the number of diagnosis codes matter in predicting in-hospital mortality?
    • Iezzoni LI, Foley SM, Daley J, et al. Comorbidities, complications, and coding bias. Does the number of diagnosis codes matter in predicting in-hospital mortality? JAMA. 1992;267:2197-2203.
    • (1992) JAMA , vol.267 , pp. 2197-2203
    • Iezzoni, L.I.1    Foley, S.M.2    Daley, J.3
  • 19
    • 37349022921 scopus 로고    scopus 로고
    • Exploring relative mortality and epoetin alfa dose among hemodialysis patients
    • Bradbury BD, Wang O, Critchlow CW, et al. Exploring relative mortality and epoetin alfa dose among hemodialysis patients. Am J Kidney Dis. 2008;51:62-70.
    • (2008) Am J Kidney Dis , vol.51 , pp. 62-70
    • Bradbury, B.D.1    Wang, O.2    Critchlow, C.W.3
  • 20
    • 68849123913 scopus 로고    scopus 로고
    • Evolving statistical methods to facilitate evaluation of the causal association between erythropoiesis-stimulating agent dose and mortality in nonexperimental research: Strengths and limitations
    • Bradbury BD, Brookhart MA, Winkelmayer WC, et al. Evolving statistical methods to facilitate evaluation of the causal association between erythropoiesis-stimulating agent dose and mortality in nonexperimental research: strengths and limitations. Am J Kidney Dis. 2009;54:554-560.
    • (2009) Am J Kidney Dis , vol.54 , pp. 554-560
    • Bradbury, B.D.1    Brookhart, M.A.2    Winkelmayer, W.C.3
  • 21
    • 0022973522 scopus 로고
    • Identifiability, exchangeability, and epidemiological confounding
    • Greenland S, Robins JM. Identifiability, exchangeability, and epidemiological confounding. Int J Epidemiol. 1986;15:413-419.
    • (1986) Int J Epidemiol , vol.15 , pp. 413-419
    • Greenland, S.1    Robins, J.M.2
  • 22
    • 0035063108 scopus 로고    scopus 로고
    • Data, design, and background knowledge in etiologic inference
    • Robins JM. Data, design, and background knowledge in etiologic inference. Epidemiology. 2001;12:313-320.
    • (2001) Epidemiology , vol.12 , pp. 313-320
    • Robins, J.M.1
  • 23
    • 0037080447 scopus 로고    scopus 로고
    • Causal knowledge as a prerequisite for confounding evaluation: An application to birth defects epidemiology
    • Hernan MA, Hernandez-Diaz S, Werler MM, et al. Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am J Epidemiol. 2002;155:176-184.
    • (2002) Am J Epidemiol , vol.155 , pp. 176-184
    • Hernan, M.A.1    Hernandez-Diaz, S.2    Werler, M.M.3
  • 25
    • 0026556155 scopus 로고
    • Identifiability and exchangeability for direct and indirect effects
    • Robins JM, Greenland S. Identifiability and exchangeability for direct and indirect effects. Epidemiology. 1992;3:143-155.
    • (1992) Epidemiology , vol.3 , pp. 143-155
    • Robins, J.M.1    Greenland, S.2
  • 26
    • 0036203032 scopus 로고    scopus 로고
    • Fallibility in estimating direct effects
    • Cole SR, Hernan MA. Fallibility in estimating direct effects. Int J Epidemiol. 2002;31:163-165.
    • (2002) Int J Epidemiol , vol.31 , pp. 163-165
    • Cole, S.R.1    Hernan, M.A.2
  • 27
    • 67651021231 scopus 로고    scopus 로고
    • Overadjustment bias and unnecessary adjustment in epidemiologic studies
    • Schisterman EF, Cole SR, Platt RW. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology. 2009;20:488-495.
    • (2009) Epidemiology , vol.20 , pp. 488-495
    • Schisterman, E.F.1    Cole, S.R.2    Platt, R.W.3
  • 28
    • 0142157169 scopus 로고    scopus 로고
    • Evaluating medication effects outside of clinical trials: New-user designs
    • Ray WA. Evaluating medication effects outside of clinical trials: new-user designs. Am J Epidemiol. 2003;158:915-920.
    • (2003) Am J Epidemiol , vol.158 , pp. 915-920
    • Ray, W.A.1
  • 29
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550-560.
    • (2000) Epidemiology , vol.11 , pp. 550-560
    • Robins, J.M.1    Hernan, M.A.2    Brumback, B.3
  • 30
    • 0036605503 scopus 로고    scopus 로고
    • Use of a marginal structural model to determine the effect of aspirin on cardiovascular mortality in the Physicians' Health Study
    • Cook NR, Cole SR, Hennekens CH. Use of a marginal structural model to determine the effect of aspirin on cardiovascular mortality in the Physicians' Health Study. Am J Epidemiol. 2002;155:1045-1053.
    • (2002) Am J Epidemiol , vol.155 , pp. 1045-1053
    • Cook, N.R.1    Cole, S.R.2    Hennekens, C.H.3
  • 31
    • 77957553279 scopus 로고    scopus 로고
    • Do instrumental variables belong in propensity scores?
    • The National Bureau of Economic Research, Cambridge, MA
    • Bhattacharya J, Vogt WB. Do instrumental variables belong in propensity scores? In: NBER WorkingPaper Series; 2007. The National Bureau of Economic Research, Cambridge, MA.
    • (2007) NBER WorkingPaper Series
    • Bhattacharya, J.1    Vogt, W.B.2
  • 33
    • 0344628714 scopus 로고    scopus 로고
    • Uses of ecologic studies in the assessment of intended treatment effects
    • Wen SW, Kramer MS. Uses of ecologic studies in the assessment of intended treatment effects. J Clin Epidemiol. 1999;52:7-12.
    • (1999) J Clin Epidemiol , vol.52 , pp. 7-12
    • Wen, S.W.1    Kramer, M.S.2
  • 34
    • 0037108455 scopus 로고    scopus 로고
    • Modeling treatment effects on binary outcomes with grouped-treatment variables and individual covariates
    • Johnston SC, Henneman T, McCulloch CE, et al. Modeling treatment effects on binary outcomes with grouped-treatment variables and individual covariates. Am J Epidemiol. 2002;156:753-760.
    • (2002) Am J Epidemiol , vol.156 , pp. 753-760
    • Johnston, S.C.1    Henneman, T.2    McCulloch, C.E.3
  • 35
    • 0347418227 scopus 로고    scopus 로고
    • Determinants ofselective cyclooxygenase-2 inhibitor prescribing: Are patient or physician characteristics more important?
    • Solomon DH, Schneeweiss S, Glynn RJ, et al. Determinants ofselective cyclooxygenase-2 inhibitor prescribing: are patient or physician characteristics more important? Am J Med. 2003;115:715-720.
    • (2003) Am J Med , vol.115 , pp. 715-720
    • Solomon, D.H.1    Schneeweiss, S.2    Glynn, R.J.3
  • 36
    • 0345759770 scopus 로고    scopus 로고
    • Was breast conserving surgery underutilized for early stage breast cancer? Instrumental variables evidence for stage II patients from Iowa
    • [erratum appears in Health Serv Res. 2004;39:693]
    • Brooks JM, Chrischilles EA, Scott SD, et al. Was breast conserving surgery underutilized for early stage breast cancer? Instrumental variables evidence for stage II patients from Iowa. Health Serv Res. 2003; 38:1385-1402. [erratum appears in Health Serv Res. 2004;39:693]
    • (2003) Health Serv Res , vol.38 , pp. 1385-1402
    • Brooks, J.M.1    Chrischilles, E.A.2    Scott, S.D.3
  • 37
    • 33646802964 scopus 로고    scopus 로고
    • Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable
    • Brookhart MA, Wang PS, Solomon DH, et al. Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable. Epidemiology. 2006;17:268-275.
    • (2006) Epidemiology , vol.17 , pp. 268-275
    • Brookhart, M.A.1    Wang, P.S.2    Solomon, D.H.3
  • 38
    • 33846436128 scopus 로고    scopus 로고
    • Analysis of observational studies in the presence of treatment selection bias: Effects of invasive cardiac management on AMI survival using propensity score and instrumental variable methods
    • Stukel TA, Fisher ES, Wennberg DE, et al. Analysis of observational studies in the presence of treatment selection bias: effects of invasive cardiac management on AMI survival using propensity score and instrumental variable methods. JAMA. 2007;297:278-285.
    • (2007) JAMA , vol.297 , pp. 278-285
    • Stukel, T.A.1    Fisher, E.S.2    Wennberg, D.E.3
  • 39
    • 3442886513 scopus 로고    scopus 로고
    • Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study
    • Juurlink DN, Mamdani MM, Lee DS, et al. Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. N Engl J Med. 2004;351:543-551.
    • (2004) N Engl J Med , vol.351 , pp. 543-551
    • Juurlink, D.N.1    Mamdani, M.M.2    Lee, D.S.3
  • 40
    • 42149190098 scopus 로고    scopus 로고
    • Use of instrumental variables in the analysis of generalized linear models in the presence of unmeasured confounding with applications to epidemiological research
    • Johnston KM, Gustafson P, Levy AR, et al. Use of instrumental variables in the analysis of generalized linear models in the presence of unmeasured confounding with applications to epidemiological research. Stat Med. 2008;27:1539-1556.
    • (2008) Stat Med , vol.27 , pp. 1539-1556
    • Johnston, K.M.1    Gustafson, P.2    Levy, A.R.3
  • 41
    • 65249101333 scopus 로고    scopus 로고
    • Effect of highly active antiretroviral therapy on incident AIDS using calendar period as an instrumental variable
    • Cain LE, Cole SR, Greenland S, et al. Effect of highly active antiretroviral therapy on incident AIDS using calendar period as an instrumental variable. Am J Epidemiol. 2009;169:1124-1132.
    • (2009) Am J Epidemiol , vol.169 , pp. 1124-1132
    • Cain, L.E.1    Cole, S.R.2    Greenland, S.3
  • 42
    • 2542447680 scopus 로고    scopus 로고
    • Gastrointestinal bleeding after the introduction of COX 2 inhibitors: Ecological study
    • Mamdani M, Juurlink DN, Kopp A, et al. Gastrointestinal bleeding after the introduction of COX 2 inhibitors: ecological study. BMJ. 2004;328:1415-1416.
    • (2004) BMJ , vol.328 , pp. 1415-1416
    • Mamdani, M.1    Juurlink, D.N.2    Kopp, A.3
  • 43
    • 0038334174 scopus 로고    scopus 로고
    • Quantifying biases in causal models: Classical confounding vs collider-stratification bias
    • Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratification bias. Epidemiology. 2003;14:300-306.
    • (2003) Epidemiology , vol.14 , pp. 300-306
    • Greenland, S.1
  • 44
    • 77952717253 scopus 로고    scopus 로고
    • Illustrating bias due to conditioning on a collider
    • Cole SR, Platt RW, Schisterman EF, et al. Illustrating bias due to conditioning on a collider. Int J Epidemiol. 2010;39:417-420.
    • (2010) Int J Epidemiol , vol.39 , pp. 417-420
    • Cole, S.R.1    Platt, R.W.2    Schisterman, E.F.3
  • 45
    • 40049100642 scopus 로고    scopus 로고
    • Invited commentary: Variable selection versus shrinkage in the control of multiple confounders
    • discussion 30-31
    • Greenland S. Invited commentary: variable selection versus shrinkage in the control of multiple confounders. Am J Epidemiol. 2008;167:523- 529, discussion 30-31.
    • (2008) Am J Epidemiol , vol.167 , pp. 523-529
    • Greenland, S.1
  • 46
    • 0023092594 scopus 로고
    • A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation
    • Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40:373-383.
    • (1987) J Chronic Dis , vol.40 , pp. 373-383
    • Charlson, M.E.1    Pompei, P.2    Ales, K.L.3
  • 47
    • 0027445675 scopus 로고
    • Adapting a clinical comorbidity index for use with ICD-9-CM administrative data: Differing perspectives
    • discussion 81-90
    • Romano PS, Roos LL, Jollis JG. Adapting a clinical comorbidity index for use with ICD-9-CM administrative data: differing perspectives. J Clin Epidemiol. 1993;46:1075-1079, discussion 81-90.
    • (1993) J Clin Epidemiol , vol.46 , pp. 1075-1079
    • Romano, P.S.1    Roos, L.L.2    Jollis, J.G.3
  • 48
    • 34848867584 scopus 로고    scopus 로고
    • Use of propensity score technique to account for exposure-related covariates: An example and lesson
    • Seeger JD, Kurth T, Walker AM. Use of propensity score technique to account for exposure-related covariates: an example and lesson. Med Care. 2007;45:S143-S148.
    • (2007) Med Care , vol.45
    • Seeger, J.D.1    Kurth, T.2    Walker, A.M.3
  • 49
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum P, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70:41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.1    Rubin, D.B.2
  • 50
    • 0030862072 scopus 로고    scopus 로고
    • Estimating causal effects from large data sets using propensity scores
    • Rubin DB. Estimating causal effects from large data sets using propensity scores. Ann Intern Med. 1997;127:757-763.
    • (1997) Ann Intern Med , vol.127 , pp. 757-763
    • Rubin, D.B.1
  • 51
    • 0041626110 scopus 로고    scopus 로고
    • Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders
    • Cepeda MS, Boston R, Farrar JT, et al. Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. Am J Epidemiol. 2003;158:280-287.
    • (2003) Am J Epidemiol , vol.158 , pp. 280-287
    • Cepeda, M.S.1    Boston, R.2    Farrar, J.T.3
  • 52
    • 34249660012 scopus 로고    scopus 로고
    • The risk of coronary heart disease in type 2 diabetic patients exposed to thiazolidinediones compared to metformin and sulfonylurea therapy
    • Johannes CB, Koro CE, Quinn SG, et al. The risk of coronary heart disease in type 2 diabetic patients exposed to thiazolidinediones compared to metformin and sulfonylurea therapy. Pharmacoepidemiol Drug Saf. 2007;16:504-512.
    • (2007) Pharmacoepidemiol Drug Saf , vol.16 , pp. 504-512
    • Johannes, C.B.1    Koro, C.E.2    Quinn, S.G.3
  • 53
    • 67651042983 scopus 로고    scopus 로고
    • High dimensional propensity score adjustment
    • Schneeweiss S, Rassen J, Glynn RJ, et al. High dimensional propensity score adjustment. Epidemiology. 2009;20:512-522.
    • (2009) Epidemiology , vol.20 , pp. 512-522
    • Schneeweiss, S.1    Rassen, J.2    Glynn, R.J.3
  • 54
    • 67651052307 scopus 로고    scopus 로고
    • Exhaustion, automation, theory, and confounding
    • Joffe MM. Exhaustion, automation, theory, and confounding. Epidemiology. 2009;20:523-524.
    • (2009) Epidemiology , vol.20 , pp. 523-524
    • Joffe, M.M.1
  • 55
    • 0013091927 scopus 로고    scopus 로고
    • Semi-automated sensitivity analysis to assess systematic errors in observational data
    • Lash TL, Fink AK. Semi-automated sensitivity analysis to assess systematic errors in observational data. Epidemiology. 2003;14:451-458.
    • (2003) Epidemiology , vol.14 , pp. 451-458
    • Lash, T.L.1    Fink, A.K.2
  • 56
    • 1442326306 scopus 로고    scopus 로고
    • Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures
    • Brumback BA, Hernan MA, Haneuse SJ, et al. Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures. Stat Med. 2004;23:749-767.
    • (2004) Stat Med , vol.23 , pp. 749-767
    • Brumback, B.A.1    Hernan, M.A.2    Haneuse, S.J.3
  • 57
    • 33744495314 scopus 로고    scopus 로고
    • Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics
    • Schneeweiss S. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics. Pharmacoepidemiol Drug Saf. 2006;15:291-303.
    • (2006) Pharmacoepidemiol Drug Saf , vol.15 , pp. 291-303
    • Schneeweiss, S.1
  • 58
    • 47349085647 scopus 로고    scopus 로고
    • Bias formulas for external adjustment and sensitivity analysis of unmeasured confounders
    • Arah OA, Chiba Y, Greenland S. Bias formulas for external adjustment and sensitivity analysis of unmeasured confounders. Ann Epidemiol. 2008;18:637-646.
    • (2008) Ann Epidemiol , vol.18 , pp. 637-646
    • Arah, O.A.1    Chiba, Y.2    Greenland, S.3
  • 59
    • 13744260134 scopus 로고    scopus 로고
    • Adjusting for unmeasured confounders in pharmacoepidemiologic claims data using external information: The example of COX2 inhibitors and myocardial infarction
    • Schneeweiss S, Glynn RJ, Tsai EH, et al. Adjusting for unmeasured confounders in pharmacoepidemiologic claims data using external information: the example of COX2 inhibitors and myocardial infarction. Epidemiology. 2005;16:17-24.
    • (2005) Epidemiology , vol.16 , pp. 17-24
    • Schneeweiss, S.1    Glynn, R.J.2    Tsai, E.H.3
  • 60
    • 34848882248 scopus 로고    scopus 로고
    • Adjustments for unmeasured confounders in pharmacoepidemiologic database studies using external information
    • Sturmer T, Glynn RJ, Rothman KJ, et al. Adjustments for unmeasured confounders in pharmacoepidemiologic database studies using external information. Med Care. 2007;45:S158-S165.
    • (2007) Med Care , vol.45
    • Sturmer, T.1    Glynn, R.J.2    Rothman, K.J.3
  • 61
    • 34447129608 scopus 로고    scopus 로고
    • Performance of propensity score calibration-a simulation study
    • Sturmer T, Schneeweiss S, Rothman KJ, et al. Performance of propensity score calibration-a simulation study. Am J Epidemiol. 2007;165:1110-1118.
    • (2007) Am J Epidemiol , vol.165 , pp. 1110-1118
    • Sturmer, T.1    Schneeweiss, S.2    Rothman, K.J.3
  • 62
    • 0346880128 scopus 로고    scopus 로고
    • Identification of causal effects using instrumental variables
    • Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. J Am Stat Assoc. 1996;81:444-455.
    • (1996) J Am Stat Assoc , vol.81 , pp. 444-455
    • Angrist, J.D.1    Imbens, G.W.2    Rubin, D.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.