메뉴 건너뛰기




Volumn 64, Issue , 2014, Pages 380-386

Discrimination of Brazilian artisanal and inspected pork sausages: Application of unsupervised, linear and non-linear supervised chemometric methods

Author keywords

Artificial neural networks; Chemometric methods; Classification; Pattern recognition; Sausage

Indexed keywords

CHROMATOGRAPHY; CLASSIFICATION (OF INFORMATION); CLUSTER ANALYSIS; COMMERCE; HIERARCHICAL SYSTEMS; MOISTURE; NEURAL NETWORKS; PATTERN RECOGNITION; PRINCIPAL COMPONENT ANALYSIS;

EID: 84904695091     PISSN: 09639969     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.foodres.2014.07.003     Document Type: Article
Times cited : (54)

References (35)
  • 5
    • 84904643591 scopus 로고    scopus 로고
    • Brasil Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n°4 de 31 de março de 2000
    • Available in:, (Acessed 12/04/2012)
    • Brasil (2000). Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n°4 de 31 de março de 2000. Regulamento Técnico de Identidade e Qualidade de Lingüiça Frescal Available in:, (Acessed 12/04/2012). http://www.agricultura.gov.br.
    • (2000) Regulamento Técnico de Identidade e Qualidade de Lingüiça Frescal
  • 6
    • 84904656686 scopus 로고    scopus 로고
    • Brasil Agência Nacional de Vigilância Sanitária. RDC n° 360 de 13 de dezembro de 2003
    • Available in:, (Acessed 12/04/2011)
    • Brasil (2003). Agência Nacional de Vigilância Sanitária. RDC n° 360 de 13 de dezembro de 2003. Regulamento técnico sobre rotulagem nutricional de alimentos embalados Available in:, (Acessed 12/04/2011). http://www.anvisa.gov.br.
    • (2003) Regulamento técnico sobre rotulagem nutricional de alimentos embalados
  • 7
    • 84904643908 scopus 로고    scopus 로고
    • o 4/2011. (Disponível em: Acesso em: 23 jun. 2011)
    • o 4/2011. (Disponível em: http://www.in.gov.br pelo código 00032011040800081. Acesso em: 23 jun. 2011).
    • (2011) Brasil Extrato do termo de compromisso
  • 13
    • 80053383867 scopus 로고    scopus 로고
    • Application of artificial neural network in food classification
    • Debska B., Guzowska-Świder B. Application of artificial neural network in food classification. Analytica Chimica Acta 2011, 705:283-291.
    • (2011) Analytica Chimica Acta , vol.705 , pp. 283-291
    • Debska, B.1    Guzowska-Świder, B.2
  • 16
    • 78651096349 scopus 로고    scopus 로고
    • Characterization of Brazilian lager and brown ale beers based on color, phenolic compounds, and antioxidant activity using chemometrics
    • Granato D., Branco G.F., Cruz A.G., Faria J.A.F. Characterization of Brazilian lager and brown ale beers based on color, phenolic compounds, and antioxidant activity using chemometrics. Journal of the Science of Food and Agriculture 2011, 91:563-571.
    • (2011) Journal of the Science of Food and Agriculture , vol.91 , pp. 563-571
    • Granato, D.1    Branco, G.F.2    Cruz, A.G.3    Faria, J.A.F.4
  • 17
    • 84888042854 scopus 로고    scopus 로고
    • Observations on the use of statistical methods in food science and technology
    • Granato D., Calado V.M.A., Jarvis B. Observations on the use of statistical methods in food science and technology. Food Research International 2014, 54:137-149.
    • (2014) Food Research International , vol.54 , pp. 137-149
    • Granato, D.1    Calado, V.M.A.2    Jarvis, B.3
  • 20
    • 84861198863 scopus 로고    scopus 로고
    • Classification of rice cultivars based on cluster analysis of hydration and pasting properties of their starches
    • Lee I., We G.J., Kim D.E., Cho Y.-S., Yoon M.-R., Shin M., et al. Classification of rice cultivars based on cluster analysis of hydration and pasting properties of their starches. LWT - Food Science and Technology 2012, 48:164-168.
    • (2012) LWT - Food Science and Technology , vol.48 , pp. 164-168
    • Lee, I.1    We, G.J.2    Kim, D.E.3    Cho, Y.-S.4    Yoon, M.-R.5    Shin, M.6
  • 21
    • 84871600521 scopus 로고    scopus 로고
    • The research progress of sodium salt and its regulatory factors on bone
    • Li Y.-B., Li Q.-N. The research progress of sodium salt and its regulatory factors on bone. Chinese Pharmacological Bulletin 2012, 28:1342-1345.
    • (2012) Chinese Pharmacological Bulletin , vol.28 , pp. 1342-1345
    • Li, Y.-B.1    Li, Q.-N.2
  • 23
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 1993, 6:525-533.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 24
    • 84859918752 scopus 로고    scopus 로고
    • Survey of residual nitrite and nitrate in conventional and organic/natural/uncured/indirectly cured meats available at retail in the United States
    • Nuñez De González M.T., Osburn W.N., Hardin M.D., Longnecker M., Garg H.K., Bryan N.S., et al. Survey of residual nitrite and nitrate in conventional and organic/natural/uncured/indirectly cured meats available at retail in the United States. Journal of Agricultural and Food Chemistry 2012, 60:3981-3990.
    • (2012) Journal of Agricultural and Food Chemistry , vol.60 , pp. 3981-3990
    • Nuñez De González, M.T.1    Osburn, W.N.2    Hardin, M.D.3    Longnecker, M.4    Garg, H.K.5    Bryan, N.S.6
  • 25
    • 77955088837 scopus 로고    scopus 로고
    • Sensory acceptability of slow fermented sausages based on fat content and ripening time
    • Olivares A., Navarro J.L., Salvador A., Flores M. Sensory acceptability of slow fermented sausages based on fat content and ripening time. Meat Science 2010, 86:251-257.
    • (2010) Meat Science , vol.86 , pp. 251-257
    • Olivares, A.1    Navarro, J.L.2    Salvador, A.3    Flores, M.4
  • 26
    • 84867899931 scopus 로고    scopus 로고
    • Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks
    • Özbalci B., Boyacia I.H., Topcua A., Kadilarb C., Tamerc U. Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks. Food Chemistry 2013, 136:1444-1452.
    • (2013) Food Chemistry , vol.136 , pp. 1444-1452
    • Özbalci, B.1    Boyacia, I.H.2    Topcua, A.3    Kadilarb, C.4    Tamerc, U.5
  • 27
    • 84869221073 scopus 로고    scopus 로고
    • Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometric analysis
    • Santos P.M., Pereira-Filho E.R., Rodriguez-Saona L.E. Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometric analysis. Food Chemistry 2013, 138:19-24.
    • (2013) Food Chemistry , vol.138 , pp. 19-24
    • Santos, P.M.1    Pereira-Filho, E.R.2    Rodriguez-Saona, L.E.3
  • 29
    • 35748979984 scopus 로고    scopus 로고
    • Estimation of storage time of yogurt with artificial neural network modeling
    • Sofu A., Ekinci F.Y. Estimation of storage time of yogurt with artificial neural network modeling. Journal of Dairy Science 2007, 90:3118-3125.
    • (2007) Journal of Dairy Science , vol.90 , pp. 3118-3125
    • Sofu, A.1    Ekinci, F.Y.2
  • 31
    • 68349097464 scopus 로고    scopus 로고
    • Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques
    • Stanimirova I., Ustun B., Cajka T., Riddelova K., Hajslova J., Buydens L.M.C., et al. Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques. Food Chemistry 2010, 118:171-176.
    • (2010) Food Chemistry , vol.118 , pp. 171-176
    • Stanimirova, I.1    Ustun, B.2    Cajka, T.3    Riddelova, K.4    Hajslova, J.5    Buydens, L.M.C.6
  • 32
    • 84865571372 scopus 로고    scopus 로고
    • Survey of naturally and conventionally cured commercial frankfurters, ham, and bacon for physio-chemical characteristics that affect bacterial growth
    • Sullivan G.A., Jackson-Davis A.L., Schrader K.D., Xi Y., Kulchaiyawat C., Sebranek J.G., et al. Survey of naturally and conventionally cured commercial frankfurters, ham, and bacon for physio-chemical characteristics that affect bacterial growth. Meat Science 2012, 92:808-815.
    • (2012) Meat Science , vol.92 , pp. 808-815
    • Sullivan, G.A.1    Jackson-Davis, A.L.2    Schrader, K.D.3    Xi, Y.4    Kulchaiyawat, C.5    Sebranek, J.G.6
  • 34
    • 84865550195 scopus 로고    scopus 로고
    • Rapid discrimination of pork in Halal and non-Halal Chinese ham sausages by Fourier transform infrared (FTIR) spectroscopy and chemometrics
    • Xu L., Cai C.B., Cui H.F., Ye Z.H., Yu X.P. Rapid discrimination of pork in Halal and non-Halal Chinese ham sausages by Fourier transform infrared (FTIR) spectroscopy and chemometrics. Meat Science 2012, 92:506-510.
    • (2012) Meat Science , vol.92 , pp. 506-510
    • Xu, L.1    Cai, C.B.2    Cui, H.F.3    Ye, Z.H.4    Yu, X.P.5
  • 35


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.