메뉴 건너뛰기




Volumn 131 AISC, Issue VOL. 2, 2012, Pages 623-635

EEG signal classification using empirical mode decomposition and support vector machine

Author keywords

EEG signal classification; Empirical mode decomposition; Epileptic seizure EEG signal; Support vector machine

Indexed keywords

CLASSIFICATION ACCURACY; EEG SIGNAL CLASSIFICATION; EEG SIGNALS; EMD METHOD; EMPIRICAL MODE DECOMPOSITION; FREQUENCY MODULATED; INTRINSIC MODE FUNCTIONS; LEAST SQUARES SUPPORT VECTOR MACHINES; NARROW BANDS; RADIAL BASIS FUNCTIONS;

EID: 84861210590     PISSN: 18675662     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-81-322-0491-6_57     Document Type: Conference Paper
Times cited : (41)

References (33)
  • 1
    • 0038238304 scopus 로고    scopus 로고
    • Adaptive epileptic seizure prediction system
    • Iasemidis, L.D., Shiau, D.S., et al.: Adaptive epileptic seizure prediction system. IEEE Trans. Biomed. Eng. 50, 616-627 (2003)
    • (2003) IEEE Trans. Biomed. Eng. , vol.50 , pp. 616-627
    • Iasemidis, L.D.1    Shiau, D.S.2
  • 2
    • 0032962246 scopus 로고    scopus 로고
    • Automatic detection of seizures and spikes
    • Gotman, J.: Automatic detection of seizures and spikes. J. Clin. Neurophysiol. 16, 130-140 (1999)
    • (1999) J. Clin. Neurophysiol. , vol.16 , pp. 130-140
    • Gotman, J.1
  • 3
    • 0038159366 scopus 로고    scopus 로고
    • Detection of spike and wave discharges in the cortical EEG of genetic absence epilepsy rats from Strasbourg
    • Hese, P.V., Martens, J.P., Boon, P., Dedeurwaerdere, S., Lemahieu, I., Walle, R.V.: Detection of spike and wave discharges in the cortical EEG of genetic absence epilepsy rats from Strasbourg. Phys. Med. Biol. 48, 1685-1700 (2003)
    • (2003) Phys. Med. Biol. , vol.48 , pp. 1685-1700
    • Hese, P.V.1    Martens, J.P.2    Boon, P.3    Dedeurwaerdere, S.4    Lemahieu, I.5    Walle, R.V.6
  • 4
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • Srinivasan, V., Eswaran, C., Sriraam, N.: Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 29, 647-660 (2005)
    • (2005) J. Med. Syst. , vol.29 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 6
    • 35248825924 scopus 로고    scopus 로고
    • EEG signal analysis using FB expansion and secondorder linear TVAR process
    • Pachori, R.B., Sircar, P.: EEG signal analysis using FB expansion and secondorder linear TVAR process. Signal Process 88, 415-420 (2008)
    • (2008) Signal Process , vol.88 , pp. 415-420
    • Pachori, R.B.1    Sircar, P.2
  • 7
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • Adeli, H., Zhou, Z., Dadmehr, N.: Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 123, 69-87 (2003)
    • (2003) J. Neurosci. Methods , vol.123 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 8
    • 0038398958 scopus 로고    scopus 로고
    • Wavelet based automatic seizure detection in intracerebral electroencephalogram
    • Khan, Y.U., Gotman, J.: Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin. Neurophysiol. 114, 898-908 (2003)
    • (2003) Clin. Neurophysiol. , vol.114 , pp. 898-908
    • Khan, Y.U.1    Gotman, J.2
  • 9
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on time-frequency analysis and artificial neural networks
    • article ID 80510
    • Tzallas, A.T., Tsipouras, M.G., Fotisdis, D.I.: Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intell. Neurosci., article ID 80510 (2007)
    • (2007) Comput. Intell. Neurosci.
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotisdis, D.I.3
  • 10
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signal classification
    • Güler, N.F., Übeyli, E.D., Güler, İ.: Recurrent neural networks employing Lyapunov exponents for EEG signal classification. Expert Syst. Appl. 29, 506-514 (2005)
    • (2005) Expert Syst. Appl. , vol.29 , pp. 506-514
    • Güler, N.F.1    Übeyli, E.D.2    Güler, I.3
  • 11
    • 0029123213 scopus 로고
    • Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss
    • Lehnertz, K., Elger, C.E.: Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroencephalogr. Clin. Neurophysiol. 95, 108-117 (1995)
    • (1995) Electroencephalogr. Clin. Neurophysiol. , vol.95 , pp. 108-117
    • Lehnertz, K.1    Elger, C.E.2
  • 12
    • 0031264147 scopus 로고    scopus 로고
    • Use of the fractal dimension for the analysis of electroencephalographic time series
    • Accardo, A., Affinito, M., Carrozzi, M., Bouquet, F.: Use of the fractal dimension for the analysis of electroencephalographic time series. Biol. Cybern. 77, 339-350 (1997)
    • (1997) Biol. Cybern. , vol.77 , pp. 339-350
    • Accardo, A.1    Affinito, M.2    Carrozzi, M.3    Bouquet, F.4
  • 14
    • 18744431041 scopus 로고    scopus 로고
    • Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy
    • Casdagli, M.C., Iasemidis, L.D., et al.: Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy. Electroencephalogr. Clin. Neurophysiol. 102, 98-105 (1997)
    • (1997) Electroencephalogr. Clin. Neurophysiol. , vol.102 , pp. 98-105
    • Casdagli, M.C.1    Iasemidis, L.D.2
  • 15
    • 78651302006 scopus 로고    scopus 로고
    • A new approach for epileptic seizure detection: Sample entropy based feature extraction and extreme learning machine
    • Song, Y., Lió, P.: A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine. J. Biomed. Sci. Eng. 3, 556-567 (2010)
    • (2010) J. Biomed. Sci. Eng. , vol.3 , pp. 556-567
    • Song, Y.1    Lió, P.2
  • 16
    • 34547573516 scopus 로고    scopus 로고
    • Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
    • Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans. Biomed. Eng. 54, 1545-1551 (2007)
    • (2007) IEEE Trans. Biomed. Eng. , vol.54 , pp. 1545-1551
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 17
    • 38349123053 scopus 로고    scopus 로고
    • Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection
    • Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans. Biomed. Eng. 55, 512-518 (2008)
    • (2008) IEEE Trans. Biomed. Eng. , vol.55 , pp. 512-518
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 18
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • Ocak, H.: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl. 36, 2027-2036 (2009)
    • (2009) Expert Syst. Appl. , vol.36 , pp. 2027-2036
    • Ocak, H.1
  • 19
    • 77957685691 scopus 로고    scopus 로고
    • Epileptic seizure detection using multiwavelet transform based approximation entropy and artificial neural networks
    • Guo, L., Rivero, D., Pazos, A.: Epileptic seizure detection using multiwavelet transform based approximation entropy and artificial neural networks. J. Neurosci. Methods 193, 156-163 (2010)
    • (2010) J. Neurosci. Methods , vol.193 , pp. 156-163
    • Guo, L.1    Rivero, D.2    Pazos, A.3
  • 20
    • 78549254986 scopus 로고    scopus 로고
    • Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition
    • article ID 293056
    • Pachori, R.B.: Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res. Lett. Signal Process., article ID 293056 (2008)
    • (2008) Res. Lett. Signal Process.
    • Pachori, R.B.1
  • 21
    • 79956288045 scopus 로고    scopus 로고
    • Seizure classification in EEG signals utilizing Hilbert-Huang transform
    • Oweis, R.J., Abdulhey, E.W.: Seizure classification in EEG signals utilizing Hilbert-Huang transform. Biomed. Eng. Online 10, 38 (2011)
    • (2011) Biomed. Eng. Online , vol.10 , pp. 38
    • Oweis, R.J.1    Abdulhey, E.W.2
  • 22
    • 80655124711 scopus 로고    scopus 로고
    • Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition
    • (in press), doi:10.1016/j.cmpb.2011.03.009
    • Pachori, R.B., Bajaj, V.: Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition, Computer Methods Progr. Biomed. (2011) (in press), doi:10.1016/j.cmpb.2011.03.009
    • (2011) Computer Methods Progr. Biomed.
    • Pachori, R.B.1    Bajaj, V.2
  • 23
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis
    • Huang, N.E., et al.: The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lon. A 454, 903-995 (1998)
    • (1998) Proc. R. Soc. Lon. A , vol.454 , pp. 903-995
    • Huang, N.E.1
  • 24
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity dependence on recording region and brain state
    • article ID 061907
    • Andrzejak, R.G., Lehnertz, K., et al.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity dependence on recording region and brain state. Phys. Rev. E. 64, article ID 061907 (2001)
    • (2001) Phys. Rev. E. , vol.64
    • Andrzejak, R.G.1    Lehnertz, K.2
  • 26
    • 0029744119 scopus 로고    scopus 로고
    • Applying continuous chaotic modeling to cardic signal analysis
    • Cohen, M.E., Hudson, D.L., Deedwania, P.: Applying continuous chaotic modeling to cardic signal analysis. IEEE Eng. Med. Biol. Mag. 15, 97-102 (1996)
    • (1996) IEEE Eng. Med. Biol. Mag. , vol.15 , pp. 97-102
    • Cohen, M.E.1    Hudson, D.L.2    Deedwania, P.3
  • 27
    • 38249004577 scopus 로고
    • Signal processing via Fourier-Bessel series expansion
    • Schroeder, J.: Signal processing via Fourier-Bessel series expansion. Digit. Signal Process. 3, 112-124 (1993)
    • (1993) Digit. Signal Process. , vol.3 , pp. 112-124
    • Schroeder, J.1
  • 28
    • 84860145090 scopus 로고    scopus 로고
    • Assessment of effects of sensory perturbations using Fourier-Bessel expansion method for postual stability analysis
    • Pachori, R.B., Hewson, D.: Assessment of effects of sensory perturbations using Fourier-Bessel expansion method for postual stability analysis. J. Intell. Syst. 20(2), 167-186 (2011)
    • (2011) J. Intell. Syst. , vol.20 , Issue.2 , pp. 167-186
    • Pachori, R.B.1    Hewson, D.2
  • 29
    • 71649095504 scopus 로고    scopus 로고
    • Analysis of multicomponent AM-FM signals using FB-DESA method
    • Pachori, R.B., Sircar, P.: Analysis of multicomponent AM-FM signals using FB-DESA method. Digit. Signal Process. 20, 42-62 (2010)
    • (2010) Digit. Signal Process. , vol.20 , pp. 42-62
    • Pachori, R.B.1    Sircar, P.2
  • 30
    • 33846577297 scopus 로고    scopus 로고
    • A new technique to reduce cross terms in Wigner distribution
    • Pachori, R.B., Sircar, P.: A new technique to reduce cross terms in Wigner distribution. Digit. Signal Process. 17, 466-474 (2007)
    • (2007) Digit. Signal Process. , vol.17 , pp. 466-474
    • Pachori, R.B.1    Sircar, P.2
  • 32
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Sukens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9, 293-300 (1999)
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Sukens, J.A.K.1    Vandewalle, J.2
  • 33
    • 37249031426 scopus 로고    scopus 로고
    • Wavelet-based feature extraction for support vector machines for screening balance impairments in the eldery
    • Khandoker, A.H., Lai, D.T.H., Begg, R.K., Palaniswami, M.: Wavelet-based feature extraction for support vector machines for screening balance impairments in the eldery. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 587-597 (2007)
    • (2007) IEEE Trans. Neural Syst. Rehabil. Eng. , vol.15 , pp. 587-597
    • Khandoker, A.H.1    Lai, D.T.H.2    Begg, R.K.3    Palaniswami, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.