메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1232-1247

Application of the sample entropy for discrimination between seizure and seizure-free EEG signals

Author keywords

Empirical mode decomposition (EMD); Epileptic seizure; Sample entropy

Indexed keywords

BRAIN ACTIVITY; EEG SIGNALS; EMPIRICAL MODE DECOMPOSITION; EPILEPTIC SEIZURES; INTRINSIC MODE FUNCTIONS; SAMPLE ENTROPY;

EID: 84872198822     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (33)
  • 1
    • 0038238304 scopus 로고    scopus 로고
    • Adaptive epileptic seizure prediction system
    • Iasemidis, L.D., Shiau, D.S., et. al.: Adaptive Epileptic Seizure Prediction System. IEEE Trans. on Biomed. Eng. 50, 616-627 (2003)
    • (2003) IEEE Trans. on Biomed. Eng. , vol.50 , pp. 616-627
    • Iasemidis, L.D.1    Shiau, D.S.2
  • 2
    • 0032962246 scopus 로고    scopus 로고
    • Automatic detection of seizures and spikes
    • Gotman, J.: Automatic Detection of Seizures and Spikes. Journal of Clinical Neu-rophysiology, 16, 130-140 (1999)
    • (1999) Journal of Clinical Neu-rophysiology , vol.16 , pp. 130-140
    • Gotman, J.1
  • 4
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • Srinivasan, V., Eswaran, C., Sriraam, A.N.: Artificial Neural Network based Epileptic Detection using Time-Domain and Frequency-Domain Features. Journal of Medical System, 29, 647-660 (2005)
    • (2005) Journal of Medical System , vol.29 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, A.N.3
  • 6
    • 35248825924 scopus 로고    scopus 로고
    • EEG signal analysis using FB expansion and second-order linear TVAR process
    • Pachori, R.B., Sircar, P.: EEG Signal Analysis using FB Expansion and Second-Order Linear TVAR Process. Signal Processing, 88, 415-420 (2008)
    • (2008) Signal Processing , vol.88 , pp. 415-420
    • Pachori, R.B.1    Sircar, P.2
  • 7
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • Adeli, H., Zhou, Z., Dadmehr, N.: Analysis of EEG Records in an Epileptic Patient using Wavelet Transform. Journal of Neuroscince Methods, 123, 69-87 (2003)
    • (2003) Journal of Neuroscince Methods , vol.123 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 8
    • 0038398958 scopus 로고    scopus 로고
    • Wavelet based automatic seizure detection in intracere-bral electroencephalogram
    • Khan, Y.U., Gotman, J.: Wavelet based Automatic Seizure Detection in Intracere-bral Electroencephalogram. Clinical Neurophysiology, 114, 898-908 (2003)
    • (2003) Clinical Neurophysiology , vol.114 , pp. 898-908
    • Khan, Y.U.1    Gotman, J.2
  • 10
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing lyapunov exponents for EEG signal classification
    • Gulera, N.F., Vbeylib, E.D., Gular, I.: Recurrent Neural Networks Employing Lyapunov Exponents for EEG Signal Classification. Expert Systems with Applications, 29, 506-514 (2005)
    • (2005) Expert Systems with Applications , vol.29 , pp. 506-514
    • Gulera, N.F.1    Vbeylib, E.D.2    Gular, I.3
  • 11
    • 0029123213 scopus 로고
    • Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss
    • Lehnertz, K., Elger, C.E.: Spatio-Temporal Dynamics of the Primary Epileptogenic Area in Temporal Lobe Epilepsy Characterized by Neuronal Complexity Loss. Electroencephalography and Clinical Neurophysiology, 95, 108-117 (1995)
    • (1995) Electroencephalography and Clinical Neurophysiology , vol.95 , pp. 108-117
    • Lehnertz, K.1    Elger, C.E.2
  • 12
    • 0031264147 scopus 로고    scopus 로고
    • Use of the fractal dimension for the analysis of electroencephalographic time series
    • Accardo, A., Affinito, M., Carrozzi, M., Bouquet, F.: Use of the Fractal Dimension for the Analysis of Electroencephalographic Time Series. Biol Cyber, 77, 339-350 (1997)
    • (1997) Biol Cyber , vol.77 , pp. 339-350
    • Accardo, A.1    Affinito, M.2    Carrozzi, M.3    Bouquet, F.4
  • 14
  • 15
    • 0009520409 scopus 로고
    • Strange attractors, chaotic behavior, and information flow
    • Shaw, R.: Strange Attractors, Chaotic Behavior, and Information Flow. Z. Naturforsch. 36, 80-112 (1981)
    • (1981) Z. Naturforsch , vol.36 , pp. 80-112
    • Shaw, R.1
  • 16
    • 4243243202 scopus 로고
    • Estimation of the kolmogorov entropy from a chaotic signal
    • Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov Entropy from a Chaotic Signal. Phys. Rev. A, 28, 2591-2593 (1983)
    • (1983) Phys. Rev. A , vol.28 , pp. 2591-2593
    • Grassberger, P.1    Procaccia, I.2
  • 17
    • 35949018382 scopus 로고
    • Ergodic theory of chaos and strange attractors
    • Eckmann, J.P., Ruelle, D.: Ergodic Theory of Chaos and Strange Attractors. Rev. Mod. Phys. 57, 617-656 (1985)
    • (1985) Rev. Mod. Phys. , vol.57 , pp. 617-656
    • Eckmann, J.P.1    Ruelle, D.2
  • 18
    • 0006223162 scopus 로고
    • Invariants related to dimension and entropy
    • Rio de Janeiro, Brazil
    • Takens, F.: Invariants Related to Dimension and Entropy. In: Proc. 13th Coloq. Brasileiro de Matematica, Rio de Janeiro, Brazil (1983)
    • (1983) Proc. 13th Coloq. Brasileiro de Matematica
    • Takens, F.1
  • 19
    • 0026015905 scopus 로고
    • Approximate entropy as a measure of system complexity
    • Pincus, S.M.: Approximate Entropy as a Measure of System Complexity, In: Proc. Nat. Acad. Sci. 88, 2297-2301 (1991)
    • (1991) Proc. Nat. Acad. Sci. , vol.88 , pp. 2297-2301
    • Pincus, S.M.1
  • 20
    • 0033949457 scopus 로고    scopus 로고
    • Physiological time-series analysis using approximate entropy and sample entropy
    • Richman, J.S., Moorman, J.R.: Physiological Time-Series Analysis using Approximate Entropy and Sample Entropy. Amer. J. Physiol. Heart and Circulatory Physiol. 278, 2039-49 (2000)
    • (2000) Amer. J. Physiol. Heart and Circulatory Physiol. , vol.278 , pp. 2039-2049
    • Richman, J.S.1    Moorman, J.R.2
  • 22
    • 78651302006 scopus 로고    scopus 로고
    • A new approach for epileptic seizure detection: Sample entropy based extraction and extreme learning machine
    • Song, Y., Lio, P.: A New Approach for Epileptic Seizure Detection: Sample Entropy based Extraction and Extreme Learning Machine. J. Biomedical Science and Engineering, 556-567 (2010)
    • (2010) J. Biomedical Science and Engineering , pp. 556-567
    • Song, Y.1    Lio, P.2
  • 23
    • 34547573516 scopus 로고    scopus 로고
    • Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
    • Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Mixed-Band Wavelet-Chaos-Neural Network Methodology for Epilepsy and Epileptic Seizure Detection. IEEE Transactions on Biomedical Engineering, 54, 1545-1551 (2007)
    • (2007) IEEE Transactions on Biomedical Engineering , vol.54 , pp. 1545-1551
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 24
    • 38349123053 scopus 로고    scopus 로고
    • Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection
    • Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Principal Component Analysis-Enhanced Cosine Radial Basis Function Neural Network for Robust Epilepsy and Seizure Detection, IEEE Transactions on Biomedical Engineering, 55, 512-518 (2008)
    • (2008) IEEE Transactions on Biomedical Engineering , vol.55 , pp. 512-518
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 25
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • Ocak, H.: Automatic Detection of Epileptic Seizures in EEG using Discrete Wavelet Transform and Approximate Entropy. Expert Systems with Applications, 36, 2017-2036 (2009)
    • (2009) Expert Systems with Applications , vol.36 , pp. 2017-2036
    • Ocak, H.1
  • 26
    • 77957685691 scopus 로고    scopus 로고
    • Epileptic seizure detection using multiwavelet transform based approximation entropy and artificial neural networks
    • Guo, L., Rivero, D., Pazos, A.: Epileptic Seizure Detection using Multiwavelet Transform based Approximation Entropy and Artificial Neural Networks. Journal of Neuroscience methods, 193, 156-163 (2010)
    • (2010) Journal of Neuroscience Methods , vol.193 , pp. 156-163
    • Guo, L.1    Rivero, D.2    Pazos, A.3
  • 27
    • 78549254986 scopus 로고    scopus 로고
    • Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition
    • Article ID 293056
    • Pachori, R.B.: Discrimination between Ictal and Seizure-Free EEG Signals using Empirical Mode Decomposition. Research Letters in Signal Processing, Article ID 293056 (2008)
    • (2008) Research Letters in Signal Processing
    • Pachori, R.B.1
  • 28
    • 79956288045 scopus 로고    scopus 로고
    • Seizure classification in EEG signals utilizing hilbert-huang transform
    • online
    • Oweis, R.J. Abdulhey, E.W.: Seizure Classification in EEG Signals Utilizing Hilbert-Huang Transform. Biomed. Eng. online (2011)
    • (2011) Biomed. Eng.
    • Oweis, R.J.1    Abdulhey, E.W.2
  • 29
    • 80655124711 scopus 로고    scopus 로고
    • Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition
    • in press
    • Pachori, R.B., Bajaj, V.: Analysis of Normal and Epileptic Seizure EEG Signals using Empirical Mode Decomposition, Comput. Methods Programs Biomed. in press (2011)
    • (2011) Comput. Methods Programs Biomed
    • Pachori, R.B.1    Bajaj, V.2
  • 30
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and hilbert spectrum for nonlinear and non-stationary time series analysis
    • Huang, N.E. et. al.: The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proc. Roy. Soc. London A, 454, 903-995 (1998)
    • (1998) Proc. Roy. Soc. London A , vol.454 , pp. 903-995
    • Huang, N.E.1
  • 31
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity dependence on recording region and brain state
    • Article ID 061907
    • Andrzejak, R.G., Lehnertz, K., et. al.: Indications of Nonlinear Deterministic and Finite-Dimensional Structures in Time Series of Brain Electrical Activity Dependence on Recording Region and Brain State. Phys. Rev. E. 64, Article ID 061907 (2001)
    • (2001) Phys. Rev. E , vol.64
    • Andrzejak, R.G.1    Lehnertz, K.2
  • 33
    • 25144494760 scopus 로고    scopus 로고
    • Prediction error estimation: A comparison of resampling methods
    • Molinaro, A., Simon, R., Pfeiffer, R.: Prediction Error Estimation: A comparison of Resampling Methods. Bioinformation, 21, 3301-3307 (2005)
    • (2005) Bioinformation , vol.21 , pp. 3301-3307
    • Molinaro, A.1    Simon, R.2    Pfeiffer, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.