-
1
-
-
0018290619
-
Micromanipulation studies of chromosome movement I. Chromosome-spindle attachment and the mechanical properties of chromosomal spindle fibers
-
Begg, D.A., and G.W. Ellis. 1979. Micromanipulation studies of chromosome movement. I. Chromosome-spindle attachment and the mechanical properties of chromosomal spindle fibers. J. Cell Biol. 82:528-541. http://dx.doi.org/10.1083/jcb.82.2.528
-
(1979)
J. Cell Biol.
, vol.82
, pp. 528-541
-
-
Begg, D.A.1
Ellis, G.W.2
-
2
-
-
48249109896
-
Building a spindle of the correct length in human cells requires the interaction between TPX2 and Aurora A
-
Bird, A.W., and A.A. Hyman. 2008. Building a spindle of the correct length in human cells requires the interaction between TPX2 and Aurora A. J. Cell Biol. 182:289-300. http://dx.doi.org/10.1083/jcb.200802005
-
(2008)
J. Cell Biol.
, vol.182
, pp. 289-300
-
-
Bird, A.W.1
Hyman, A.A.2
-
3
-
-
84860318462
-
Nucleation and transport organize microtubules in metaphase spindles
-
Brugués, J., V. Nuzzo, E. Mazur, and D.J. Needleman. 2012. Nucleation and transport organize microtubules in metaphase spindles. Cell. 149:554- 564. http://dx.doi.org/10.1016/j.cell.2012.03.027
-
(2012)
Cell
, vol.149
, pp. 554-564
-
-
Brugués, J.1
Nuzzo, V.2
Mazur, E.3
Needleman, D.J.4
-
4
-
-
34547858506
-
Slide-and-cluster models for spindle assembly
-
Burbank, K.S., T.J. Mitchison, and D.S. Fisher. 2007. Slide-and-cluster models for spindle assembly. Curr. Biol. 17:1373-1383. http://dx.doi.org/10.1016/j.cub.2007.07.058
-
(2007)
Curr. Biol.
, vol.17
, pp. 1373-1383
-
-
Burbank, K.S.1
Mitchison, T.J.2
Fisher, D.S.3
-
5
-
-
33646099141
-
Kinesin 5-independent poleward flux of kinetochore microtubules in PtK1 cells
-
Cameron, L.A., G. Yang, D. Cimini, J.C. Canman, O. Kisurina-Evgenieva, A. Khodjakov, G. Danuser, and E.D. Salmon. 2006. Kinesin 5-independent poleward flux of kinetochore microtubules in PtK1 cells. J. Cell Biol. 173:173-179. http://dx.doi.org/10.1083/jcb.200601075
-
(2006)
J. Cell Biol.
, vol.173
, pp. 173-179
-
-
Cameron, L.A.1
Yang, G.2
Cimini, D.3
Canman, J.C.4
Kisurina-Evgenieva, O.5
Khodjakov, A.6
Danuser, G.7
Salmon, E.D.8
-
6
-
-
79959658154
-
Spindle pole mechanics studied in mitotic asters: dynamic distribution of spindle forces through compliant linkages
-
Charlebois, B.D., S. Kollu, H.T. Schek, D.A. Compton, and A.J. Hunt. 2011. Spindle pole mechanics studied in mitotic asters: dynamic distribution of spindle forces through compliant linkages. Biophys. J. 100:1756-1764. http://dx.doi.org/10.1016/j.bpj.2011.02.017
-
(2011)
Biophys. J.
, vol.100
, pp. 1756-1764
-
-
Charlebois, B.D.1
Kollu, S.2
Schek, H.T.3
Compton, D.A.4
Hunt, A.J.5
-
7
-
-
1542609461
-
Kinetochore fibre dynamics outside the context of the spindle during anaphase
-
Chen, W., and D. Zhang. 2004. Kinetochore fibre dynamics outside the context of the spindle during anaphase. Nat. Cell Biol. 6:227-231. http://dx.doi.org/10.1038/ncb1104
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 227-231
-
-
Chen, W.1
Zhang, D.2
-
8
-
-
84887235321
-
Kinetic framework of spindle assembly checkpoint signalling
-
Dick, A.E., and D.W. Gerlich. 2013. Kinetic framework of spindle assembly checkpoint signalling. Nat. Cell Biol. 15:1370-1377. http://dx.doi.org/10.1038/ncb2842
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 1370-1377
-
-
Dick, A.E.1
Gerlich, D.W.2
-
9
-
-
0033003162
-
NuMA is a component of an insoluble matrix at mitotic spindle poles
-
Dionne, M.A., L. Howard, and D.A. Compton. 1999. NuMA is a component of an insoluble matrix at mitotic spindle poles. Cell Motil. Cytoskeleton. 42:189-203. http://dx.doi.org/10.1002(SICI)1097-0169(1999)42:3<189::AID-CM3>3.0.CO;2-X
-
(1999)
Cell Motil. Cytoskeleton.
, vol.42
, pp. 189-203
-
-
Dionne, M.A.1
Howard, L.2
Compton, D.A.3
-
10
-
-
0037137429
-
LGN blocks the ability of NuMA to bind and stabilize microtubules A mechanism for mitotic spindle assembly regulation
-
Du, Q., L. Taylor, D.A. Compton, and I.G. Macara. 2002. LGN blocks the ability of NuMA to bind and stabilize microtubules. A mechanism for mitotic spindle assembly regulation. Curr. Biol. 12:1928-1933. http://dx.doi.org/10.1016/S0960-9822(02)01298-8
-
(2002)
Curr. Biol.
, vol.12
, pp. 1928-1933
-
-
Du, Q.1
Taylor, L.2
Compton, D.A.3
Macara, I.G.4
-
11
-
-
67649834504
-
Compression regulates mitotic spindle length by a mechanochemical switch at the poles
-
Dumont, S., and T.J. Mitchison. 2009. Compression regulates mitotic spindle length by a mechanochemical switch at the poles. Curr. Biol. 19:1086- 1095. http://dx.doi.org/10.1016/j.cub.2009.05.056
-
(2009)
Curr. Biol.
, vol.19
, pp. 1086-1095
-
-
Dumont, S.1
Mitchison, T.J.2
-
12
-
-
0028877327
-
NuMA is required for the organization of microtubules into aster-like mitotic arrays
-
Gaglio, T., A. Saredi, and D.A. Compton. 1995. NuMA is required for the organization of microtubules into aster-like mitotic arrays. J. Cell Biol. 131:693-708. http://dx.doi.org/10.1083/jcb.131.3.693
-
(1995)
J. Cell Biol.
, vol.131
, pp. 693-708
-
-
Gaglio, T.1
Saredi, A.2
Compton, D.A.3
-
13
-
-
0030961046
-
Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes
-
Gaglio, T., M.A. Dionne, and D.A. Compton. 1997. Mitotic spindle poles are organized by structural and motor proteins in addition to centrosomes. J. Cell Biol. 138:1055-1066. http://dx.doi.org/10.1083/jcb.138.5.1055
-
(1997)
J. Cell Biol.
, vol.138
, pp. 1055-1066
-
-
Gaglio, T.1
Dionne, M.A.2
Compton, D.A.3
-
14
-
-
60349102244
-
Spindle fusion requires dyneinmediated sliding of oppositely oriented microtubules
-
Gatlin, J.C., A. Matov, A.C. Groen, D.J. Needleman, T.J. Maresca, G. Danuser, T.J. Mitchison, and E.D. Salmon. 2009. Spindle fusion requires dyneinmediated sliding of oppositely oriented microtubules. Curr. Biol. 19:287- 296. http://dx.doi.org/10.1016/j.cub.2009.01.055
-
(2009)
Curr. Biol.
, vol.19
, pp. 287-296
-
-
Gatlin, J.C.1
Matov, A.2
Groen, A.C.3
Needleman, D.J.4
Maresca, T.J.5
Danuser, G.6
Mitchison, T.J.7
Salmon, E.D.8
-
15
-
-
0026345013
-
Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein
-
Gill, S.R., T.A. Schroer, I. Szilak, E.R. Steuer, M.P. Sheetz, and D.W. Cleveland. 1991. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J. Cell Biol. 115:1639-1650. http://dx.doi.org/10.1083/jcb.115.6.1639
-
(1991)
J. Cell Biol.
, vol.115
, pp. 1639-1650
-
-
Gill, S.R.1
Schroer, T.A.2
Szilak, I.3
Steuer, E.R.4
Sheetz, M.P.5
Cleveland, D.W.6
-
16
-
-
0035809156
-
Chromosome movement in mitosis requires microtubule anchorage at spindle poles
-
Gordon, M.B., L. Howard, and D.A. Compton. 2001. Chromosome movement in mitosis requires microtubule anchorage at spindle poles. J. Cell Biol. 152:425-434. http://dx.doi.org/10.1083/jcb.152.3.425
-
(2001)
J. Cell Biol.
, vol.152
, pp. 425-434
-
-
Gordon, M.B.1
Howard, L.2
Compton, D.A.3
-
17
-
-
27544447708
-
Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins
-
Goshima, G., F. Nédélec, and R.D. Vale. 2005. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J. Cell Biol. 171:229-240. http://dx.doi.org/10.1083/jcb.200505107
-
(2005)
J. Cell Biol.
, vol.171
, pp. 229-240
-
-
Goshima, G.1
Nédélec, F.2
Vale, R.D.3
-
18
-
-
43149120217
-
Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle
-
Goshima, G., M. Mayer, N. Zhang, N. Stuurman, and R.D. Vale. 2008. Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J. Cell Biol. 181:421-429. http://dx.doi.org/10.1083/jcb.200711053
-
(2008)
J. Cell Biol.
, vol.181
, pp. 421-429
-
-
Goshima, G.1
Mayer, M.2
Zhang, N.3
Stuurman, N.4
Vale, R.D.5
-
19
-
-
0036558281
-
Direct binding of NuMA to tubulin is mediated by a novel sequence motif in the tail domain that bundles and stabilizes microtubules
-
Haren, L., and A. Merdes. 2002. Direct binding of NuMA to tubulin is mediated by a novel sequence motif in the tail domain that bundles and stabilizes microtubules. J. Cell Sci. 115:1815-1824.
-
(2002)
J. Cell Sci.
, vol.115
, pp. 1815-1824
-
-
Haren, L.1
Merdes, A.2
-
20
-
-
0029836330
-
Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts
-
Heald, R., R. Tournebize, T. Blank, R. Sandaltzopoulos, P. Becker, A. Hyman, and E. Karsenti. 1996. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature. 382:420-425. http://dx.doi.org/10.1038/382420a0
-
(1996)
Nature
, vol.382
, pp. 420-425
-
-
Heald, R.1
Tournebize, R.2
Blank, T.3
Sandaltzopoulos, R.4
Becker, P.5
Hyman, A.6
Karsenti, E.7
-
21
-
-
0030751640
-
Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization
-
Heald, R., R. Tournebize, A. Habermann, E. Karsenti, and A. Hyman. 1997. Spindle assembly in Xenopus egg extracts: respective roles of centrosomes and microtubule self-organization. J. Cell Biol. 138:615-628. http://dx.doi.org/10.1083/jcb.138.3.615
-
(1997)
J. Cell Biol.
, vol.138
, pp. 615-628
-
-
Heald, R.1
Tournebize, R.2
Habermann, A.3
Karsenti, E.4
Hyman, A.5
-
22
-
-
84893542408
-
Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition
-
Jiang, K., S. Hua, R. Mohan, I. Grigoriev, K.W. Yau, Q. Liu, E.A. Katrukha, A.F. Altelaar, A.J. Heck, C.C. Hoogenraad, and A. Akhmanova. 2014. Microtubule minus-end stabilization by polymerization-driven CAMSAP deposition. Dev. Cell. 28:295-309. http://dx.doi.org/10.1016/j.devcel.2014.01.001
-
(2014)
Dev. Cell.
, vol.28
, pp. 295-309
-
-
Jiang, K.1
Hua, S.2
Mohan, R.3
Grigoriev, I.4
Yau, K.W.5
Liu, Q.6
Katrukha, E.A.7
Altelaar, A.F.8
Heck, A.J.9
Hoogenraad, C.C.10
Akhmanova, A.11
-
23
-
-
0037416133
-
Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis
-
Khodjakov, A., L. Copenagle, M.B. Gordon, D.A. Compton, and T.M. Kapoor. 2003. Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. J. Cell Biol. 160:671-683. http://dx.doi.org/10.1083/jcb.200208143
-
(2003)
J. Cell Biol.
, vol.160
, pp. 671-683
-
-
Khodjakov, A.1
Copenagle, L.2
Gordon, M.B.3
Compton, D.A.4
Kapoor, T.M.5
-
24
-
-
13444301231
-
Multiple mechanisms regulate NuMA dynamics at spindle poles
-
Kisurina-Evgenieva, O., G. Mack, Q. Du, I. Macara, A. Khodjakov, and D.A. Compton. 2004. Multiple mechanisms regulate NuMA dynamics at spindle poles. J. Cell Sci. 117:6391-6400. http://dx.doi.org/10.1242/jcs.01568
-
(2004)
J. Cell Sci.
, vol.117
, pp. 6391-6400
-
-
Kisurina-Evgenieva, O.1
Mack, G.2
Du, Q.3
Macara, I.4
Khodjakov, A.5
Compton, D.A.6
-
25
-
-
84857788913
-
Chromosome- and spindle-polederived signals generate an intrinsic code for spindle position and orientation
-
Kiyomitsu, T., and I.M. Cheeseman. 2012. Chromosome- and spindle-polederived signals generate an intrinsic code for spindle position and orientation. Nat. Cell Biol. 14:311-317. http://dx.doi.org/10.1038/ncb2440
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 311-317
-
-
Kiyomitsu, T.1
Cheeseman, I.M.2
-
26
-
-
84877800188
-
Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation
-
Lancaster, O.M., M. Le Berre, A. Dimitracopoulos, D. Bonazzi, E. Zlotek-Zlotkiewicz, R. Picone, T. Duke, M. Piel, and B. Baum. 2013. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev. Cell. 25:270-283. http://dx.doi.org/10.1016/j.devcel.2013.03.014
-
(2013)
Dev. Cell.
, vol.25
, pp. 270-283
-
-
Lancaster, O.M.1
Le Berre, M.2
Dimitracopoulos, A.3
Bonazzi, D.4
Zlotek-Zlotkiewicz, E.5
Picone, R.6
Duke, T.7
Piel, M.8
Baum, B.9
-
27
-
-
0026783380
-
A vertebrate actinrelated protein is a component of a multisubunit complex involved in microtubule-based vesicle motility
-
Lees-Miller, J.P., D.M. Helfman, and T.A. Schroer. 1992. A vertebrate actinrelated protein is a component of a multisubunit complex involved in microtubule-based vesicle motility. Nature. 359:244-246. http://dx.doi.org/10.1038/359244a0
-
(1992)
Nature
, vol.359
, pp. 244-246
-
-
Lees-Miller, J.P.1
Helfman, D.M.2
Schroer, T.A.3
-
28
-
-
10344231994
-
Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis
-
Maiato, H., C.L. Rieder, and A. Khodjakov. 2004. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J. Cell Biol. 167:831-840. http://dx.doi.org/10.1083/jcb.200407090
-
(2004)
J. Cell Biol.
, vol.167
, pp. 831-840
-
-
Maiato, H.1
Rieder, C.L.2
Khodjakov, A.3
-
29
-
-
33846621143
-
Mechanisms of spindle-pole organization are influenced by kinetochore activity in mammalian cells
-
Manning, A.L., and D.A. Compton. 2007. Mechanisms of spindle-pole organization are influenced by kinetochore activity in mammalian cells. Curr. Biol. 17:260-265. http://dx.doi.org/10.1016/j.cub.2006.11.071
-
(2007)
Curr. Biol.
, vol.17
, pp. 260-265
-
-
Manning, A.L.1
Compton, D.A.2
-
30
-
-
56349123945
-
Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts
-
Meng, W., Y. Mushika, T. Ichii, and M. Takeichi. 2008. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell-cell contacts. Cell. 135:948-959. http://dx.doi.org/10.1016/j.cell.2008.09.040
-
(2008)
Cell
, vol.135
, pp. 948-959
-
-
Meng, W.1
Mushika, Y.2
Ichii, T.3
Takeichi, M.4
-
31
-
-
0030298137
-
A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly
-
Merdes, A., K. Ramyar, J.D. Vechio, and D.W. Cleveland. 1996. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell. 87:447-458. http://dx.doi.org/10.1016/S0092-8674(00)81365-3
-
(1996)
Cell
, vol.87
, pp. 447-458
-
-
Merdes, A.1
Ramyar, K.2
Vechio, J.D.3
Cleveland, D.W.4
-
32
-
-
0034658078
-
Formation of spindle poles by dynein/dynactin-dependent transport of NuMA
-
Merdes, A., R. Heald, K. Samejima, W.C. Earnshaw, and D.W. Cleveland. 2000. Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J. Cell Biol. 149:851-862. http://dx.doi.org/10.1083/jcb.149.4.851
-
(2000)
J. Cell Biol.
, vol.149
, pp. 851-862
-
-
Merdes, A.1
Heald, R.2
Samejima, K.3
Earnshaw, W.C.4
Cleveland, D.W.5
-
33
-
-
84856196744
-
K- fibre minus ends are stabilized by a RanGTPdependent mechanism essential for functional spindle assembly
-
Meunier, S., and I. Vernos. 2011. K-fibre minus ends are stabilized by a RanGTPdependent mechanism essential for functional spindle assembly. Nat. Cell Biol. 13:1406-1414. http://dx.doi.org/10.1038/ncb2372
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1406-1414
-
-
Meunier, S.1
Vernos, I.2
-
34
-
-
0023754978
-
The forces that move chromosomes in mitosis
-
Nicklas, R.B. 1988. The forces that move chromosomes in mitosis. Annu. Rev. Biophys. Biophys. Chem. 17:431-449. http://dx.doi.org/10.1146/annurev.bb.17.060188.002243
-
(1988)
Annu. Rev. Biophys. Biophys. Chem.
, vol.17
, pp. 431-449
-
-
Nicklas, R.B.1
-
35
-
-
0014047913
-
Chromosome micromanipulation. I. The mechanics of chromosome attachment to the spindle
-
Nicklas, R.B., and C.A. Staehly. 1967. Chromosome micromanipulation. I. The mechanics of chromosome attachment to the spindle. Chromosoma. 21:1-16. http://dx.doi.org/10.1007/BF00330544
-
(1967)
Chromosoma
, vol.21
, pp. 1-16
-
-
Nicklas, R.B.1
Staehly, C.A.2
-
36
-
-
0020456093
-
Spindle microtubules and their mechanical associations after micromanipulation in anaphase
-
Nicklas, R.B., D.F. Kubai, and T.S. Hays. 1982. Spindle microtubules and their mechanical associations after micromanipulation in anaphase. J. Cell Biol. 95:91-104. http://dx.doi.org/10.1083/jcb.95.1.91
-
(1982)
J. Cell Biol.
, vol.95
, pp. 91-104
-
-
Nicklas, R.B.1
Kubai, D.F.2
Hays, T.S.3
-
37
-
-
84874077607
-
Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2
-
Petry, S., A.C. Groen, K. Ishihara, T.J. Mitchison, and R.D. Vale. 2013. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell. 152:768-777. http://dx.doi.org/10.1016/j.cell.2012.12.044
-
(2013)
Cell
, vol.152
, pp. 768-777
-
-
Petry, S.1
Groen, A.C.2
Ishihara, K.3
Mitchison, T.J.4
Vale, R.D.5
-
38
-
-
0037191081
-
Distinct cell cycle-dependent roles for dynactin and dynein at centrosomes
-
Quintyne, N.J., and T.A. Schroer. 2002. Distinct cell cycle-dependent roles for dynactin and dynein at centrosomes. J. Cell Biol. 159:245-254. http://dx.doi.org/10.1083/jcb.200203089
-
(2002)
J. Cell Biol.
, vol.159
, pp. 245-254
-
-
Quintyne, N.J.1
Schroer, T.A.2
-
39
-
-
77950858612
-
NuMA after 30 years: the matrix revisited
-
Radulescu, A.E., and D.W. Cleveland. 2010. NuMA after 30 years: the matrix revisited. Trends Cell Biol. 20:214-222. http://dx.doi.org/10.1016/j.tcb.2010.01.003
-
(2010)
Trends Cell Biol
, vol.20
, pp. 214-222
-
-
Radulescu, A.E.1
Cleveland, D.W.2
-
40
-
-
17844394685
-
Clathrin is required for the function of the mitotic spindle
-
Royle, S.J., N.A. Bright, and L. Lagnado. 2005. Clathrin is required for the function of the mitotic spindle. Nature. 434:1152-1157. http://dx.doi.org/10.1038/nature03502
-
(2005)
Nature
, vol.434
, pp. 1152-1157
-
-
Royle, S.J.1
Bright, N.A.2
Lagnado, L.3
-
41
-
-
0037119990
-
Reorganization of the microtubule array in prophase/prometaphase requires cytoplasmic dynein-dependent microtubule transport
-
Rusan, N.M., U.S. Tulu, C. Fagerstrom, and P. Wadsworth. 2002. Reorganization of the microtubule array in prophase/prometaphase requires cytoplasmic dynein-dependent microtubule transport. J. Cell Biol. 158:997-1003. http://dx.doi.org/10.1083/jcb.200204109
-
(2002)
J. Cell Biol.
, vol.158
, pp. 997-1003
-
-
Rusan, N.M.1
Tulu, U.S.2
Fagerstrom, C.3
Wadsworth, P.4
-
42
-
-
0021738719
-
Tubulin dynamics in cultured mammalian cells
-
Saxton, W.M., D.L. Stemple, R.J. Leslie, E.D. Salmon, M. Zavortink, and J.R. McIntosh. 1984. Tubulin dynamics in cultured mammalian cells. J. Cell Biol. 99:2175-2186. http://dx.doi.org/10.1083/jcb.99.6.2175
-
(1984)
J. Cell Biol.
, vol.99
, pp. 2175-2186
-
-
Saxton, W.M.1
Stemple, D.L.2
Leslie, R.J.3
Salmon, E.D.4
Zavortink, M.5
McIntosh, J.R.6
-
43
-
-
84877919799
-
The role of actin and myosin in PtK2 spindle length changes induced by laser microbeam irradiations across the spindle
-
Sheykhani, R., N. Baker, V. Gomez-Godinez, L.H. Liaw, J. Shah, M.W. Berns, and A. Forer. 2013. The role of actin and myosin in PtK2 spindle length changes induced by laser microbeam irradiations across the spindle. Cytoskeleton (Hoboken). 70:241-259. http://dx.doi.org/10.1002/cm.21104
-
(2013)
Cytoskeleton (Hoboken)
, vol.70
, pp. 241-259
-
-
Sheykhani, R.1
Baker, N.2
Gomez-Godinez, V.3
Liaw, L.H.4
Shah, J.5
Berns, M.W.6
Forer, A.7
-
44
-
-
79959644058
-
Insights into the micromechanical properties of the metaphase spindle
-
Shimamoto, Y., Y.T. Maeda, S. Ishiwata, A.J. Libchaber, and T.M. Kapoor. 2011. Insights into the micromechanical properties of the metaphase spindle. Cell. 145:1062-1074. http://dx.doi.org/10.1016/j.cell.2011.05.038
-
(2011)
Cell
, vol.145
, pp. 1062-1074
-
-
Shimamoto, Y.1
Maeda, Y.T.2
Ishiwata, S.3
Libchaber, A.J.4
Kapoor, T.M.5
-
45
-
-
57149145788
-
Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets
-
Shubeita, G.T., S.L. Tran, J. Xu, M. Vershinin, S. Cermelli, S.L. Cotton, M.A. Welte, and S.P. Gross. 2008. Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell. 135:1098- 1107. http://dx.doi.org/10.1016/j.cell.2008.10.021
-
(2008)
Cell
, vol.135
, pp. 1098-1107
-
-
Shubeita, G.T.1
Tran, S.L.2
Xu, J.3
Vershinin, M.4
Cermelli, S.5
Cotton, S.L.6
Welte, M.A.7
Gross, S.P.8
-
46
-
-
64749087709
-
Requirements for NuMA in maintenance and establishment of mammalian spindle poles
-
Silk, A.D., A.J. Holland, and D.W. Cleveland. 2009. Requirements for NuMA in maintenance and establishment of mammalian spindle poles. J. Cell Biol. 184:677-690. http://dx.doi.org/10.1083/jcb.200810091
-
(2009)
J. Cell Biol.
, vol.184
, pp. 677-690
-
-
Silk, A.D.1
Holland, A.J.2
Cleveland, D.W.3
-
47
-
-
0025826735
-
UV-microbeam irradiations of the mitotic spindle: spindle forces and structural analysis of lesions
-
Snyder, J.A., L. Armstrong, O.G. Stonington, T.P. Spurck, and J.D. Pickett-Heaps. 1991. UV-microbeam irradiations of the mitotic spindle: spindle forces and structural analysis of lesions. Eur. J. Cell Biol. 55:122-132.
-
(1991)
Eur. J. Cell Biol.
, vol.55
, pp. 122-132
-
-
Snyder, J.A.1
Armstrong, L.2
Stonington, O.G.3
Spurck, T.P.4
Pickett-Heaps, J.D.5
-
48
-
-
0025092723
-
UV microbeam irradiations of the mitotic spindle II. Spindle fiber dynamics and force production
-
Spurck, T.P., O.G. Stonington, J.A. Snyder, J.D. Pickett-Heaps, A. Bajer, and J. Mole-Bajer. 1990. UV microbeam irradiations of the mitotic spindle. II. Spindle fiber dynamics and force production. J. Cell Biol. 111:1505- 1518. http://dx.doi.org/10.1083/jcb.111.4.1505
-
(1990)
J. Cell Biol.
, vol.111
, pp. 1505-1518
-
-
Spurck, T.P.1
Stonington, O.G.2
Snyder, J.A.3
Pickett-Heaps, J.D.4
Bajer, A.5
Mole-Bajer, J.6
-
49
-
-
84880703330
-
Kinesin-12 differentially affects spindle assembly depending on its microtubule substrate
-
Sturgill, E.G., and R. Ohi. 2013. Kinesin-12 differentially affects spindle assembly depending on its microtubule substrate. Curr. Biol. 23:1280-1290. http://dx.doi.org/10.1016/j.cub.2013.05.043
-
(2013)
Curr. Biol.
, vol.23
, pp. 1280-1290
-
-
Sturgill, E.G.1
Ohi, R.2
-
50
-
-
0242286592
-
Peripheral, non-centrosomeassociated microtubules contribute to spindle formation in centrosomecontaining cells
-
Tulu, U.S., N.M. Rusan, and P. Wadsworth. 2003. Peripheral, non-centrosomeassociated microtubules contribute to spindle formation in centrosomecontaining cells. Curr. Biol. 13:1894-1899. http://dx.doi.org/10.1016/j.cub.2003.10.002
-
(2003)
Curr. Biol.
, vol.13
, pp. 1894-1899
-
-
Tulu, U.S.1
Rusan, N.M.2
Wadsworth, P.3
-
51
-
-
0026071835
-
Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein
-
Verde, F., J.M. Berrez, C. Antony, and E. Karsenti. 1991. Taxol-induced microtubule asters in mitotic extracts of Xenopus eggs: requirement for phosphorylated factors and cytoplasmic dynein. J. Cell Biol. 112:1177-1187. http://dx.doi.org/10.1083/jcb.112.6.1177
-
(1991)
J. Cell Biol.
, vol.112
, pp. 1177-1187
-
-
Verde, F.1
Berrez, J.M.2
Antony, C.3
Karsenti, E.4
-
52
-
-
84891519583
-
Nonautonomous movement of chromosomes in mitosis
-
Vladimirou, E., N. Mchedlishvili, I. Gasic, J.W. Armond, C.P. Samora, P. Meraldi, and A.D. McAinsh. 2013. Nonautonomous movement of chromosomes in mitosis. Dev. Cell. 27:60-71. http://dx.doi.org/10.1016/j.devcel.2013.08.004
-
(2013)
Dev. Cell.
, vol.27
, pp. 60-71
-
-
Vladimirou, E.1
Mchedlishvili, N.2
Gasic, I.3
Armond, J.W.4
Samora, C.P.5
Meraldi, P.6
McAinsh, A.D.7
-
53
-
-
50249160575
-
Regional variation of microtubule flux reveals microtubule organization in the metaphase meiotic spindle
-
Yang, G., L.A. Cameron, P.S. Maddox, E.D. Salmon, and G. Danuser. 2008. Regional variation of microtubule flux reveals microtubule organization in the metaphase meiotic spindle. J. Cell Biol. 182:631-639. http://dx.doi.org/10.1083/jcb.200801105
-
(2008)
J. Cell Biol.
, vol.182
, pp. 631-639
-
-
Yang, G.1
Cameron, L.A.2
Maddox, P.S.3
Salmon, E.D.4
Danuser, G.5
-
54
-
-
0028879986
-
Nucleation of microtubule assembly by a γ-tubulin-containing ring complex
-
Zheng, Y., M.L. Wong, B. Alberts, and T. Mitchison. 1995. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature. 378: 578-583. http://dx.doi.org/10.1038/378578a0
-
(1995)
Nature
, vol.378
, pp. 578-583
-
-
Zheng, Y.1
Wong, M.L.2
Alberts, B.3
Mitchison, T.4
|