메뉴 건너뛰기




Volumn 136, Issue , 2014, Pages 164-172

Model selection of Gaussian kernel PCA for novelty detection

Author keywords

Fault detection; Gaussian kernel PCA; Model selection; Novelty detection

Indexed keywords

ARTICLE; CALCULATION; CLASSIFICATION ALGORITHM; CONTROLLED STUDY; GEOMETRY; INTERMETHOD COMPARISON; K NEAREST NEIGHBOR; KERNEL METHOD; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL;

EID: 84904614407     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2014.05.015     Document Type: Article
Times cited : (16)

References (24)
  • 1
    • 0037381038 scopus 로고    scopus 로고
    • A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine
    • Cao L.J., Chua K.S., Chong W.K., Lee H.P., Gu Q.M. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 2003, 55:321-336.
    • (2003) Neurocomputing , vol.55 , pp. 321-336
    • Cao, L.J.1    Chua, K.S.2    Chong, W.K.3    Lee, H.P.4    Gu, Q.M.5
  • 2
    • 58249094366 scopus 로고    scopus 로고
    • Weighted locally linear embedding for dimension reduction
    • Pan Y.Z., Ge S.S., Al Mamun A. Weighted locally linear embedding for dimension reduction. Pattern Recogn. 2009, 42:798-811.
    • (2009) Pattern Recogn. , vol.42 , pp. 798-811
    • Pan, Y.Z.1    Ge, S.S.2    Al Mamun, A.3
  • 4
    • 81855177251 scopus 로고    scopus 로고
    • Regularized pre-image estimation for kernel PCA de-noising input space regularization and sparse reconstruction
    • Abrahamsen T.J., Hansen L.K. Regularized pre-image estimation for kernel PCA de-noising input space regularization and sparse reconstruction. J. Signal Process. Syst. 2011, 65:403-412.
    • (2011) J. Signal Process. Syst. , vol.65 , pp. 403-412
    • Abrahamsen, T.J.1    Hansen, L.K.2
  • 5
    • 22944459214 scopus 로고    scopus 로고
    • The principal components analysis of a graph, and its relationships to spectral clustering
    • Springer-Verlag Berlin, Berlin, J.F. Boulicaut, F. Esposito, F. Giannoti, D. Pedreschi (Eds.)
    • Saerens M., Fouss F., Yen L., Dupont P. The principal components analysis of a graph, and its relationships to spectral clustering. Machine Learning: Ecml 2004, Proceedings, volume 3201 of Lecture Notes in Computer Science 2004, 371-383. Springer-Verlag Berlin, Berlin. J.F. Boulicaut, F. Esposito, F. Giannoti, D. Pedreschi (Eds.).
    • (2004) Machine Learning: Ecml 2004, Proceedings, volume 3201 of Lecture Notes in Computer Science , pp. 371-383
    • Saerens, M.1    Fouss, F.2    Yen, L.3    Dupont, P.4
  • 7
    • 33750522220 scopus 로고    scopus 로고
    • Kernel PCA for novelty detection
    • Hoffmann H. Kernel PCA for novelty detection. Pattern Recogn. 2007, 40:863-874.
    • (2007) Pattern Recogn. , vol.40 , pp. 863-874
    • Hoffmann, H.1
  • 8
    • 84866013812 scopus 로고    scopus 로고
    • L1 norm based KPCA for novelty detection
    • Xiao Y., Wang H., Xu W., Zhou J. L1 norm based KPCA for novelty detection. Pattern Recogn. 2013, 46:389-396.
    • (2013) Pattern Recogn. , vol.46 , pp. 389-396
    • Xiao, Y.1    Wang, H.2    Xu, W.3    Zhou, J.4
  • 9
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: a review - part 1: statistical approaches
    • Markou M., Singh S. Novelty detection: a review - part 1: statistical approaches. Signal Process. 2003, 83:2481-2497.
    • (2003) Signal Process. , vol.83 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 10
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: a review - part 2: neural network based approaches
    • Markou M., Singh S. Novelty detection: a review - part 2: neural network based approaches. Signal Process. 2003, 83:2499-2521.
    • (2003) Signal Process. , vol.83 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 11
  • 14
    • 73849131792 scopus 로고    scopus 로고
    • Multiway spectral clustering with out-of-sample extensions through weighted kernel PCA
    • Alzate C., Suykens J.A.K. Multiway spectral clustering with out-of-sample extensions through weighted kernel PCA. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32:335-347.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , pp. 335-347
    • Alzate, C.1    Suykens, J.A.K.2
  • 16
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A., Muller K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10:1299-1319.
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Muller, K.R.3
  • 17
    • 79955475773 scopus 로고    scopus 로고
    • Selecting critical patterns based on local geometrical and statistical information
    • Li Y.H., Maguire L. Selecting critical patterns based on local geometrical and statistical information. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33:1189-1201.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , pp. 1189-1201
    • Li, Y.H.1    Maguire, L.2
  • 18
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson D.R., Martinez T.R. Reduction techniques for instance-based learning algorithms. Mach. Learn. 2000, 38:257-286.
    • (2000) Mach. Learn. , vol.38 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 21
    • 84899517383 scopus 로고    scopus 로고
    • New contributions to non-linear process monitoring through kernel partial least squares
    • Godoy J.L., Zumoffen D.A., Vega J.R., Marchetti J.L. New contributions to non-linear process monitoring through kernel partial least squares. Chemom. Intell. Lab. Syst. 2014, 135:76-89.
    • (2014) Chemom. Intell. Lab. Syst. , vol.135 , pp. 76-89
    • Godoy, J.L.1    Zumoffen, D.A.2    Vega, J.R.3    Marchetti, J.L.4
  • 22
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27:861-874.
    • (2006) Pattern Recogn. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 23
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 24
    • 80054905561 scopus 로고    scopus 로고
    • Two new parameters based on distances in a receiver operating characteristic chart for the selection of classification models
    • Prez-Garrido A., Helguera A.M., Borges F., Cordeiro M.N.D., Rivero V., Escudero A.G. Two new parameters based on distances in a receiver operating characteristic chart for the selection of classification models. J. Chem. Inf. Model. 2011, 51:2746-2759.
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2746-2759
    • Prez-Garrido, A.1    Helguera, A.M.2    Borges, F.3    Cordeiro, M.N.D.4    Rivero, V.5    Escudero, A.G.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.