메뉴 건너뛰기




Volumn 135, Issue , 2014, Pages 76-89

New contributions to non-linear process monitoring through kernel partial least squares

Author keywords

Fault detection; Fault diagnosis; KPLS modeling; Non linear processes; Prediction risk assessment

Indexed keywords

ARTICLE; CALIBRATION; KERNEL METHOD; NON LINEAR PROCESS MONITORING; PREDICTION; PRIORITY JOURNAL; PROCESS MONITORING; RISK ASSESSMENT; SENSOR; SIMULATION; STATISTICAL MODEL;

EID: 84899517383     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2014.04.001     Document Type: Article
Times cited : (30)

References (34)
  • 1
    • 0037443803 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis: process history based methods
    • Venkatasubramanian V., Rengaswamy R., Yin K., Kavuri S. A review of process fault detection and diagnosis: process history based methods. Comput. Chem. Eng. 2003, 27:327-346.
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 327-346
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Yin, K.3    Kavuri, S.4
  • 2
    • 84885432421 scopus 로고    scopus 로고
    • Fault detection systems integrated to fault-tolerant control
    • LAP Lambert Academic Publishing, Germany
    • Zumoffen D., Basualdo M. Fault detection systems integrated to fault-tolerant control. Application to Large-scale Chemical Processes 2012, LAP Lambert Academic Publishing, Germany.
    • (2012) Application to Large-scale Chemical Processes
    • Zumoffen, D.1    Basualdo, M.2
  • 3
    • 18844397336 scopus 로고    scopus 로고
    • Application of latent variable methods to process control and multivariate statistical process control in industry
    • Kourti T. Application of latent variable methods to process control and multivariate statistical process control in industry. Int. J. Adapt. Control. Signal Proc. 2005, 19:213-246.
    • (2005) Int. J. Adapt. Control. Signal Proc. , vol.19 , pp. 213-246
    • Kourti, T.1
  • 4
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • Yue H., Qin S. Reconstruction-based fault identification using a combined index. Ind. Eng. Chem. Res. 2001, 40:4403-4414.
    • (2001) Ind. Eng. Chem. Res. , vol.40 , pp. 4403-4414
    • Yue, H.1    Qin, S.2
  • 5
    • 0028905904 scopus 로고
    • Process analysis, monitoring and diagnosis using multivariate projection methods
    • Kourti T., MacGregor J. Process analysis, monitoring and diagnosis using multivariate projection methods. Chemom. Intell. Lab. Syst. 1995, 28:3-21.
    • (1995) Chemom. Intell. Lab. Syst. , vol.28 , pp. 3-21
    • Kourti, T.1    MacGregor, J.2
  • 7
  • 8
    • 69349083126 scopus 로고    scopus 로고
    • Complex process monitoring using modified partial least squares method of independent component regression
    • Zhang Y., Zhang Y. Complex process monitoring using modified partial least squares method of independent component regression. Chemom. Intell. Lab. Syst. 2009, 98:143-148.
    • (2009) Chemom. Intell. Lab. Syst. , vol.98 , pp. 143-148
    • Zhang, Y.1    Zhang, Y.2
  • 9
    • 77649123430 scopus 로고    scopus 로고
    • A systematic approach for the design of optimal monitoring systems for large scale processes
    • Zumoffen D., Basualdo M. A systematic approach for the design of optimal monitoring systems for large scale processes. Ind. Eng. Chem. Res. 2010, 49:1749-1761.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 1749-1761
    • Zumoffen, D.1    Basualdo, M.2
  • 10
    • 79959795433 scopus 로고    scopus 로고
    • Multivariate statistical monitoring of an industrial SBR process. Soft-sensor for production and rubber quality
    • Godoy J.L., Minari R.J., Vega J.R., Marchetti J.L. Multivariate statistical monitoring of an industrial SBR process. Soft-sensor for production and rubber quality. Chemom. Intell. Lab. Syst. 2011, 107:258-268.
    • (2011) Chemom. Intell. Lab. Syst. , vol.107 , pp. 258-268
    • Godoy, J.L.1    Minari, R.J.2    Vega, J.R.3    Marchetti, J.L.4
  • 12
    • 24044461725 scopus 로고    scopus 로고
    • A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction
    • Kim K., Lee J., Lee I. A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction. Chemom. Intell. Lab. Syst. 2005, 79:22-30.
    • (2005) Chemom. Intell. Lab. Syst. , vol.79 , pp. 22-30
    • Kim, K.1    Lee, J.2    Lee, I.3
  • 13
    • 33745746500 scopus 로고    scopus 로고
    • Nonlinear projection to latent structures method and its applications
    • Zhao S., Zhang J., Xu Y., Xiong Z. Nonlinear projection to latent structures method and its applications. Ind. Eng. Chem. Res. 2006, 45:3843-3852.
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 3843-3852
    • Zhao, S.1    Zhang, J.2    Xu, Y.3    Xiong, Z.4
  • 14
    • 40449133038 scopus 로고    scopus 로고
    • Nonlinear multivariate quality estimation and prediction based on kernel partial least squares
    • Zhang X., Yan W., Shao H. Nonlinear multivariate quality estimation and prediction based on kernel partial least squares. Ind. Eng. Chem. Res. 2008, 47:1120-1131.
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 1120-1131
    • Zhang, X.1    Yan, W.2    Shao, H.3
  • 15
    • 77951090351 scopus 로고    scopus 로고
    • On-line batch process monitoring using batch dynamic kernel principal component analysis
    • Jia M., Chu F., Wang F., Wang W. On-line batch process monitoring using batch dynamic kernel principal component analysis. Chemom. Intell. Lab. Syst. 2010, 101:110-122.
    • (2010) Chemom. Intell. Lab. Syst. , vol.101 , pp. 110-122
    • Jia, M.1    Chu, F.2    Wang, F.3    Wang, W.4
  • 16
    • 77956075435 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring with kernel principal component analysis
    • Alcala C., Qin S. Reconstruction-based contribution for process monitoring with kernel principal component analysis. Ind. Eng. Chem. Res. 2010, 49:7849-7857.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 7849-7857
    • Alcala, C.1    Qin, S.2
  • 17
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel Hilbert space
    • Rosipal R., Trejo L. Kernel partial least squares regression in reproducing kernel Hilbert space. J. Mach. Learn. Res. 2001, 2:97-123.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.2
  • 18
    • 84875048235 scopus 로고    scopus 로고
    • Enhanced batch process monitoring using just-in-time-learning based kernel partial least squares
    • Hu Y., Ma H., Shi H. Enhanced batch process monitoring using just-in-time-learning based kernel partial least squares. Chemom. Intell. Lab. Syst. 2013, 123:15-27.
    • (2013) Chemom. Intell. Lab. Syst. , vol.123 , pp. 15-27
    • Hu, Y.1    Ma, H.2    Shi, H.3
  • 19
    • 80052801546 scopus 로고    scopus 로고
    • On-line batch process monitoring using hierarchical kernel partial least squares
    • Zhang Y., Hu Z. On-line batch process monitoring using hierarchical kernel partial least squares. Chem. Eng. Res. Des. 2011, 89:2078-2084.
    • (2011) Chem. Eng. Res. Des. , vol.89 , pp. 2078-2084
    • Zhang, Y.1    Hu, Z.2
  • 20
    • 77949788139 scopus 로고    scopus 로고
    • Influence of water bands on prediction of composition and quality factors: the aquaphotomics of low moisture agricultural materials
    • Williams P. Influence of water bands on prediction of composition and quality factors: the aquaphotomics of low moisture agricultural materials. J. Near Infrared Spectrosc. 2009, 17:315-328.
    • (2009) J. Near Infrared Spectrosc. , vol.17 , pp. 315-328
    • Williams, P.1
  • 21
    • 53949109867 scopus 로고    scopus 로고
    • Mutual information-induced interval selection combined with kernel partial least squares for near-infrared spectral calibration
    • Tan C., Li M. Mutual information-induced interval selection combined with kernel partial least squares for near-infrared spectral calibration. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008, 71:1266-1273.
    • (2008) Spectrochim. Acta A Mol. Biomol. Spectrosc. , vol.71 , pp. 1266-1273
    • Tan, C.1    Li, M.2
  • 22
    • 78149465043 scopus 로고    scopus 로고
    • Process data modeling using modified kernel partial least squares
    • Zhang Y., Teng Y. Process data modeling using modified kernel partial least squares. Chem. Eng. Sci. 2010, 65:6353-6361.
    • (2010) Chem. Eng. Sci. , vol.65 , pp. 6353-6361
    • Zhang, Y.1    Teng, Y.2
  • 23
    • 33947326090 scopus 로고    scopus 로고
    • An in silico method for screening nicotine derivatives as cytochrome P450 2A6 selective inhibitors based on kernel partial least squares
    • Wang Y., Li Y., Wang B. An in silico method for screening nicotine derivatives as cytochrome P450 2A6 selective inhibitors based on kernel partial least squares. Int. J. Mol. Sci. 2007, 8:166-179.
    • (2007) Int. J. Mol. Sci. , vol.8 , pp. 166-179
    • Wang, Y.1    Li, Y.2    Wang, B.3
  • 24
    • 33847395360 scopus 로고    scopus 로고
    • K-PLS
    • Embrechts M., Ekins S. Classification of metabolites with kernel-partial least squares. Drug Metab. Dispos. 2007, 35:325-327.
    • (2007) Drug Metab. Dispos. , vol.35 , pp. 325-327
    • Embrechts, M.1    Ekins, S.2
  • 25
    • 84873707576 scopus 로고    scopus 로고
    • Contribution rate plot for nonlinear quality-related fault diagnosis with application to the hot strip mill process
    • Peng K., Zhang K., Li G., Zhou D. Contribution rate plot for nonlinear quality-related fault diagnosis with application to the hot strip mill process. Control. Eng. Pract. 2013, 21:360-369.
    • (2013) Control. Eng. Pract. , vol.21 , pp. 360-369
    • Peng, K.1    Zhang, K.2    Li, G.3    Zhou, D.4
  • 26
    • 84869089680 scopus 로고    scopus 로고
    • Survey on data-driven industrial process monitoring and diagnosis
    • Qin S. Survey on data-driven industrial process monitoring and diagnosis. Annu. Rev. Control. 2012, 36:220-234.
    • (2012) Annu. Rev. Control. , vol.36 , pp. 220-234
    • Qin, S.1
  • 27
    • 80053386153 scopus 로고    scopus 로고
    • Opening the kernel of kernel partial least squares and support vector machines
    • Postma G., Krooshof P., Buydens L. Opening the kernel of kernel partial least squares and support vector machines. Anal. Chim. Acta. 2011, 705:123-134.
    • (2011) Anal. Chim. Acta. , vol.705 , pp. 123-134
    • Postma, G.1    Krooshof, P.2    Buydens, L.3
  • 28
    • 84882632040 scopus 로고    scopus 로고
    • A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space
    • Godoy J., Vega J., Marchetti J. A fault detection and diagnosis technique for multivariate processes using a PLS-decomposition of the measurement space. Chemom. Intell. Lab. Syst. 2013, 128:25-36.
    • (2013) Chemom. Intell. Lab. Syst. , vol.128 , pp. 25-36
    • Godoy, J.1    Vega, J.2    Marchetti, J.3
  • 29
    • 79952573528 scopus 로고    scopus 로고
    • Analysis and generalization of fault diagnosis methods for process monitoring
    • Alcala C., Qin S. Analysis and generalization of fault diagnosis methods for process monitoring. J. Process Control 2011, 21:322-330.
    • (2011) J. Process Control , vol.21 , pp. 322-330
    • Alcala, C.1    Qin, S.2
  • 30
    • 75849130381 scopus 로고    scopus 로고
    • Condition monitoring of centrifuge vibrations using kernel PLS
    • Willis A. Condition monitoring of centrifuge vibrations using kernel PLS. Comput. Chem. Eng. 2010, 34:349-353.
    • (2010) Comput. Chem. Eng. , vol.34 , pp. 349-353
    • Willis, A.1
  • 34
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring charts
    • Martin E., Morris A. Non-parametric confidence bounds for process performance monitoring charts. J. Process Control 1996, 6(6):349-358.
    • (1996) J. Process Control , vol.6 , Issue.6 , pp. 349-358
    • Martin, E.1    Morris, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.