메뉴 건너뛰기




Volumn 9, Issue 7, 2014, Pages

biDCG: A new method for discovering global features of DNA microarray data via an iterative re-clustering procedure

Author keywords

[No Author keywords available]

Indexed keywords

DNA;

EID: 84904575821     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0102445     Document Type: Article
Times cited : (3)

References (52)
  • 2
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub T, Slonim D, Tamayo C, Huard M, Gassenberg M, et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286: 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.1    Slonim, D.2    Tamayo, C.3    Huard, M.4    Gassenberg, M.5
  • 6
    • 0036328380 scopus 로고    scopus 로고
    • Application of microarrays to the analysis of gene expression in cancer
    • MacGregor P, Squire J (2002) Application of microarrays to the analysis of gene expression in cancer. Clinical Chemistry 48: 1170-1177.
    • (2002) Clinical Chemistry , vol.48 , pp. 1170-1177
    • MacGregor, P.1    Squire, J.2
  • 7
    • 80052239787 scopus 로고    scopus 로고
    • Molecular classification of breast cancer: Is it time to pack up our microscopes
    • Cummins M, Chambers R, Simpson P, Lakhani S (2011) Molecular classification of breast cancer: is it time to pack up our microscopes. Pathology 43: 1-8.
    • (2011) Pathology , vol.43 , pp. 1-8
    • Cummins, M.1    Chambers, R.2    Simpson, P.3    Lakhani, S.4
  • 8
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena M, Shalon D, Davis R, Brown P (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470.
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.3    Brown, P.4
  • 10
    • 0036900895 scopus 로고    scopus 로고
    • Fundamentals of experimental design for cDNA microarrays
    • Churchill G (2002) Fundamentals of experimental design for cDNA microarrays. Nature Genetics 32: 490-495.
    • (2002) Nature Genetics , vol.32 , pp. 490-495
    • Churchill, G.1
  • 14
    • 0035892305 scopus 로고    scopus 로고
    • Gene expression microarray analysis in cancer biology, pharmacology, and drug development: Progress and potential
    • DOI 10.1016/S0006-2952(01)00785-7, PII S0006295201007857
    • Clarke P, Poele R, Wooster R (2001) Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochem Pharmacol 62: 1311-1336. (Pubitemid 33044679)
    • (2001) Biochemical Pharmacology , vol.62 , Issue.10 , pp. 1311-1336
    • Clarke, P.A.1    Te, P.R.2    Wooster, R.3    Workman, P.4
  • 15
    • 0036899286 scopus 로고    scopus 로고
    • From patterns to pathways: Gene expression data analysis comes of age
    • Slonim D (2002) From patterns to pathways: gene expression data analysis comes of age. Nature Genet 32: 502-508.
    • (2002) Nature Genet , vol.32 , pp. 502-508
    • Slonim, D.1
  • 16
    • 3142768191 scopus 로고    scopus 로고
    • Biclustering algorithms for biological data analysis: A survey
    • Madeira S, Oliveira A (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinf 1: 24-45.
    • (2004) IEEE/ACM Trans Comput Biol Bioinf , vol.1 , pp. 24-45
    • Madeira, S.1    Oliveira, A.2
  • 18
    • 33747883251 scopus 로고    scopus 로고
    • Clustering microarray data
    • Gollub J, Sherlock G (2006) Clustering microarray data. Methods Enzymol 411: 194-213.
    • (2006) Methods Enzymol , vol.411 , pp. 194-213
    • Gollub, J.1    Sherlock, G.2
  • 19
    • 33646137384 scopus 로고    scopus 로고
    • A systematic comparison and evaluation of biclustering methods for gene expression data
    • Prelić A, Bleuler S, Zimmermann P, Wille A, Bühlmann P, et al. (2006) A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22: 1122-1129.
    • (2006) Bioinformatics , vol.22 , pp. 1122-1129
    • Prelić, A.1    Bleuler, S.2    Zimmermann, P.3    Wille, A.4    Bühlmann, P.5
  • 20
    • 34547546186 scopus 로고    scopus 로고
    • DNA microarray analysis: Principles and clinical impact
    • DOI 10.1080/10245330701283967, PII 780859440
    • Wiltgen M, Tilz G (2007) DNA microarray analysis: principles and clinical impact. Hematology 12: 271-287. (Pubitemid 47180653)
    • (2007) Hematology , vol.12 , Issue.4 , pp. 271-287
    • Wiltgen, M.1    Tilz, G.P.2
  • 21
    • 57949105676 scopus 로고    scopus 로고
    • Biclustering via optimal re-ordering of data matrices in systems biology: Rigorous methods and comparative studies
    • DiMaggio P Jr, McAllister S, Floudas C, Feng XJ, Rabinowitz J, et al. (2008) Biclustering via optimal re-ordering of data matrices in systems biology: rigorous methods and comparative studies. BMC Bioinformatics 9: 458.
    • (2008) BMC Bioinformatics , vol.9 , pp. 458
    • DiMaggio Jr., P.1    McAllister, S.2    Floudas, C.3    Feng, X.J.4    Rabinowitz, J.5
  • 22
    • 39449097889 scopus 로고    scopus 로고
    • Techniques for clustering gene expression data
    • Kerr G, Ruskin H, Crane M, Doolan P (2008) Techniques for clustering gene expression data. Comput Biol Med 38: 283-293.
    • (2008) Comput Biol Med , vol.38 , pp. 283-293
    • Kerr, G.1    Ruskin, H.2    Crane, M.3    Doolan, P.4
  • 24
    • 77951273857 scopus 로고    scopus 로고
    • Matrix factorisation methods applied in microarray data analysis
    • Kossenkov A, Ochs M (2010) Matrix factorisation methods applied in microarray data analysis. Int J Data Min Bioinform 4: 72-90.
    • (2010) Int J Data Min Bioinform , vol.4 , pp. 72-90
    • Kossenkov, A.1    Ochs, M.2
  • 25
    • 78049416862 scopus 로고    scopus 로고
    • An overview of clustering applied to molecular biology
    • Nugent R, Meila M (2010) An overview of clustering applied to molecular biology. Methods Mol Biol 620: 369-404.
    • (2010) Methods Mol Biol , vol.620 , pp. 369-404
    • Nugent, R.1    Meila, M.2
  • 26
    • 78650121315 scopus 로고    scopus 로고
    • Clustering algorithms in biomedical research
    • Xu R, II DW (2010) Clustering algorithms in biomedical research. IEEE Rev Biomed Eng 3: 120-153.
    • (2010) IEEE Rev Biomed Eng , vol.3 , pp. 120-153
    • Xu, R.1    Ii, D.W.2
  • 28
    • 0034710876 scopus 로고    scopus 로고
    • Coupled two-way clustering analysis of gene microarray data
    • Getz G, Levine E, Domany E (2000) Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci (USA) 97: 12079-12084.
    • (2000) Proc Natl Acad Sci (USA) , vol.97 , pp. 12079-12084
    • Getz, G.1    Levine, E.2    Domany, E.3
  • 29
    • 0038109937 scopus 로고    scopus 로고
    • Coupled two-way clustering analysis of breast cancer and colon cancer gene expression data
    • DOI 10.1093/bioinformatics/btf876
    • Getz G, Gal H, Kela I, Notterman D, Domany E (2003) Coupled two-way clustering analysis of breast cancer and colon cancer gene expression data. Bioinformatics 19: 1079-1089. (Pubitemid 36790009)
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1079-1089
    • Getz, G.1    Gal, H.2    Kela, I.3    Notterman, D.A.4    Domany, E.5
  • 30
    • 0037772416 scopus 로고    scopus 로고
    • Coupled two-way clustering server
    • DOI 10.1093/bioinformatics/btg143
    • Getz G, Domany E (2003) Coupled two-way clustering server. Bioinformatics 19: 1153-1154. (Pubitemid 36790018)
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1153-1154
    • Getz, G.1    Domany, E.2
  • 32
    • 33644747547 scopus 로고    scopus 로고
    • A new approach: Interrelated two-way clustering of gene expression data
    • DOI 10.1016/j.stamet.2005.09.002, PII S1572312705000699, Bioinformatics
    • Chandra B, Shanker S, Mishra S (2006) A new approach: interrelated two-way clustering of gene expression data. Statistical Methodology 3: 93-102. (Pubitemid 43339344)
    • (2006) Statistical Methodology , vol.3 , Issue.1 , pp. 93-102
    • Chandra, B.1    Shanker, S.2    Mishra, S.3
  • 34
    • 0000902522 scopus 로고    scopus 로고
    • Data Clustering Using a Model Granular Magnet
    • Blatt M, Wiseman S, Domany E (1997) Data clustering using a model granular magnet. Neural Computation 9: 1805-1842. (Pubitemid 127462307)
    • (1997) Neural Computation , vol.9 , Issue.8 , pp. 1805-1842
    • Blatt, M.1    Wiseman, S.2    Domany, E.3
  • 35
    • 78651464533 scopus 로고    scopus 로고
    • Time, temperature and data cloud geometry
    • Fushing H, McAssey M (2010) Time, temperature and data cloud geometry. Phys Rev E 82: 061110.
    • (2010) Phys Rev E , vol.82 , pp. 061110
    • Fushing, H.1    McAssey, M.2
  • 36
    • 84873721756 scopus 로고    scopus 로고
    • Multi-scale clustering by building a robust and self-correcting ultrametric topology on data points
    • Fushing H, Wang H, der Waal KV, McCowan B, Koehl P (2013) Multi-scale clustering by building a robust and self-correcting ultrametric topology on data points. PLoS One 8: e56259.
    • (2013) PLoS One , vol.8
    • Fushing, H.1    Wang, H.2    Der Waal, K.V.3    McCowan, B.4    Koehl, P.5
  • 37
    • 84867304755 scopus 로고    scopus 로고
    • Extracting multiscale pattern information of fMRI based functional brain connectivity with application on classification of autism spectrum disorders
    • Wang H, Chen C, Fushing H (2012) Extracting multiscale pattern information of fMRI based functional brain connectivity with application on classification of autism spectrum disorders. PLoS ONE 7: e45502.
    • (2012) PLoS ONE , vol.7
    • Wang, H.1    Chen, C.2    Fushing, H.3
  • 38
    • 84867512447 scopus 로고    scopus 로고
    • Multiscale community geometry in a network and its application
    • Chen C, Fushing H (2012) Multiscale community geometry in a network and its application. Phys Rev E 86: 041120.
    • (2012) Phys Rev E , vol.86 , pp. 041120
    • Chen, C.1    Fushing, H.2
  • 40
    • 0036699526 scopus 로고    scopus 로고
    • Revealing modular organization in the yeast transcriptional network
    • DOI 10.1038/ng941
    • Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, et al. (2002) Revealing modular organization in the yeast transcriptional network. Nature Genetics 31: 370-377. (Pubitemid 35154445)
    • (2002) Nature Genetics , vol.31 , Issue.4 , pp. 370-377
    • Ihmels, J.1    Friedlander, G.2    Bergmann, S.3    Sarig, O.4    Ziv, Y.5    Barkai, N.6
  • 41
    • 79959423582 scopus 로고    scopus 로고
    • DeBi: Discovering differentially expressed biclusters using a frequent itemset approach
    • Serin A, Vingron M (2011) DeBi: discovering differentially expressed biclusters using a frequent itemset approach. Algorithm Mol Biol 6: 18.
    • (2011) Algorithm Mol Biol , vol.6 , pp. 18
    • Serin, A.1    Vingron, M.2
  • 42
    • 84885418387 scopus 로고    scopus 로고
    • A new measure for gene expression biclustering based on non-parametric correlation
    • Flores J, Inza I, Larranaga P, Calvo B (2013) A new measure for gene expression biclustering based on non-parametric correlation. Comput Meth Prog Bio 112: 367-397.
    • (2013) Comput Meth Prog Bio , vol.112 , pp. 367-397
    • Flores, J.1    Inza, I.2    Larranaga, P.3    Calvo, B.4
  • 43
    • 11244306358 scopus 로고    scopus 로고
    • Discovering statistically significant biclusters in gene expression data
    • Tanay A, Sharan R, Shamir R (2002) Discovering statistically significant biclusters in gene expression data. Bioinformatics 18: S136-S144. (Pubitemid 41185647)
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1
    • Tanay, A.1    Sharan, R.2    Shamir, R.3
  • 47
    • 0034069495 scopus 로고    scopus 로고
    • Gene Ontology: Tool for the unification of biology
    • Consortium TGO (2000) Gene Ontology: tool for the unification of biology. Nature Genet 25: 25-29.
    • (2000) Nature Genet , vol.25 , pp. 25-29
    • Consortium, T.G.O.1
  • 48
  • 49
  • 50
    • 0025066941 scopus 로고
    • More powerful procedures for multiple significance testing
    • Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9: 811-818. (Pubitemid 20343989)
    • (1990) Statistics in Medicine , vol.9 , Issue.7 , pp. 811-818
    • Hochberg, Y.1    Benjamini, Y.2
  • 51
    • 0002607026 scopus 로고    scopus 로고
    • Bayesian classification (AutoClass): Theory and results
    • Cambridge, MA: MIT Press
    • Cheeseman P, Stutz J (1996) Bayesian classification (AutoClass): Theory and results. In: Advances in knowledge discovery and data mining. Cambridge, MA: MIT Press, pp. 153-180.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 52
    • 0036012349 scopus 로고    scopus 로고
    • Plaid models for gene expression data
    • Lazzeroni L, Owen A (2000) Plaid models for gene expression data. Statistica Sinica 12: 61-86.
    • (2000) Statistica Sinica , vol.12 , pp. 61-86
    • Lazzeroni, L.1    Owen, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.