메뉴 건너뛰기




Volumn , Issue , 2012, Pages 349-360

GUPT: Privacy preserving data analysis made easy

Author keywords

algorithms; data mining; differential privacy; security

Indexed keywords

CONSTANT LEVEL; DATA ANALYSTS; DATA SETS; DIFFERENTIAL PRIVACIES; EXTERNAL AGENTS; NEW MODEL; OUTPUT ACCURACY; PRIVACY PRESERVING; SECURITY; SENSITIVE DATAS; SIDE CHANNEL ATTACK; THEORETICAL FRAMEWORK; TRUST ASSUMPTIONS;

EID: 84862658503     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2213836.2213876     Document Type: Conference Paper
Times cited : (226)

References (28)
  • 2
    • 84976736962 scopus 로고
    • An amateur's introduction to recursive query processing strategies
    • F. Bancilhon and R. Ramakrishnan. An amateur's introduction to recursive query processing strategies. In SIGMOD, 1986.
    • (1986) SIGMOD
    • Bancilhon, F.1    Ramakrishnan, R.2
  • 3
    • 34250017239 scopus 로고    scopus 로고
    • A face is exposed for aol searcher no. 4417749
    • Aug.
    • M. Barbaro and T. Zeller. A face is exposed for aol searcher no. 4417749. The New York Times, Aug. 2006.
    • (2006) The New York Times
    • Barbaro, M.1    Zeller, T.2
  • 5
    • 33746086554 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC, 2006.
    • (2006) TCC
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 6
    • 77954717626 scopus 로고    scopus 로고
    • Differential privacy under continual observation
    • C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential privacy under continual observation. In STOC, 2010.
    • (2010) STOC
    • Dwork, C.1    Naor, M.2    Pitassi, T.3    Rothblum, G.N.4
  • 8
    • 65449162734 scopus 로고    scopus 로고
    • Composition attacks and auxiliary information in data privacy
    • S. R. Ganta, S. P. Kasiviswanathan, and A. Smith. Composition attacks and auxiliary information in data privacy. In KDD, 2008.
    • (2008) KDD
    • Ganta, S.R.1    Kasiviswanathan, S.P.2    Smith, A.3
  • 11
    • 78650518102 scopus 로고    scopus 로고
    • Boosting the accuracy of differentially private histograms through consistency
    • September
    • M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private histograms through consistency. Proc. VLDB Endow., 3:1021-1032, September 2010.
    • (2010) Proc. VLDB Endow. , vol.3 , pp. 1021-1032
    • Hay, M.1    Rastogi, V.2    Miklau, G.3    Suciu, D.4
  • 13
    • 70849111568 scopus 로고    scopus 로고
    • Attacks on privacy and definetti's theorem
    • D. Kifer. Attacks on privacy and definetti's theorem. In SIGMOD, 2009.
    • (2009) SIGMOD
    • Kifer, D.1
  • 14
    • 77954715960 scopus 로고    scopus 로고
    • Optimizing linear counting queries under differential privacy
    • C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear counting queries under differential privacy. In PODS, 2010.
    • (2010) PODS
    • Li, C.1    Hay, M.2    Rastogi, V.3    Miklau, G.4    McGregor, A.5
  • 16
    • 70849116921 scopus 로고    scopus 로고
    • Privacy integrated queries: An extensible platform for privacy-preserving data analysis
    • F. McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In SIGMOD, 2009.
    • (2009) SIGMOD
    • McSherry, F.1
  • 17
    • 46749128577 scopus 로고    scopus 로고
    • Mechanism design via differential privacy
    • F. McSherry and K. Talwar. Mechanism design via differential privacy. In FOCS, 2007.
    • (2007) FOCS
    • McSherry, F.1    Talwar, K.2
  • 19
    • 35448955271 scopus 로고    scopus 로고
    • Smooth sensitivity and sampling in private data analysis
    • K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis. In STOC, 2007.
    • (2007) STOC
    • Nissim, K.1    Raskhodnikova, S.2    Smith, A.3
  • 21
    • 77954711910 scopus 로고    scopus 로고
    • Differentially private aggregation of distributed time-series with transformation and encryption
    • V. Rastogi and S. Nath. Differentially private aggregation of distributed time-series with transformation and encryption. In SIGMOD, 2010.
    • (2010) SIGMOD
    • Rastogi, V.1    Nath, S.2
  • 23
    • 2642543760 scopus 로고    scopus 로고
    • Towards an information theoretic metric for anonymity
    • A. Serjantov and G. Danezis. Towards an information theoretic metric for anonymity. In PET, 2002.
    • (2002) PET
    • Serjantov, A.1    Danezis, G.2
  • 24
    • 79959714549 scopus 로고    scopus 로고
    • Privacy-preserving statistical estimation with optimal convergence rates
    • A. Smith. Privacy-preserving statistical estimation with optimal convergence rates. In STOC, 2011.
    • (2011) STOC
    • Smith, A.1
  • 26
    • 70849131224 scopus 로고    scopus 로고
    • A framework to balance privacy and data usability using data degradation
    • H. H. van, M. Fokkinga, and N. Anciaux. A framework to balance privacy and data usability using data degradation. In CSE, 2009.
    • (2009) CSE
    • Van, H.H.1    Fokkinga, M.2    Anciaux, N.3
  • 28
    • 79959998772 scopus 로고    scopus 로고
    • ireduct: Differential privacy with reduced relative errors
    • X. Xiao, G. Bender, M. Hay, and J. Gehrke. ireduct: differential privacy with reduced relative errors. In SIGMOD, 2011.
    • (2011) SIGMOD
    • Xiao, X.1    Bender, G.2    Hay, M.3    Gehrke, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.