-
1
-
-
84875441083
-
The changing scene of amyotrophic lateral sclerosis
-
Robberecht, W. & Philips, T. The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci. 14, 248-264 (2013).
-
(2013)
Nat. Rev. Neurosci.
, vol.14
, pp. 248-264
-
-
Robberecht, W.1
Philips, T.2
-
2
-
-
84862115153
-
Misregulated RNA processing in amyotrophic lateral sclerosis
-
Polymenidou, M. et al. Misregulated RNA processing in amyotrophic lateral sclerosis. Brain Res. 1462, 3-15 (2012).
-
(2012)
Brain Res.
, vol.1462
, pp. 3-15
-
-
Polymenidou, M.1
-
3
-
-
80052968310
-
TDP-43 and FUS/TLS: Cellular functions and implications for neurodegeneration
-
Fiesel, F. C. & Kahle, P. J. TDP-43 and FUS/TLS: cellular functions and implications for neurodegeneration. FEBS J. 278, 3550-3568 (2011).
-
(2011)
FEBS J.
, vol.278
, pp. 3550-3568
-
-
Fiesel, F.C.1
Kahle, P.J.2
-
4
-
-
61349156118
-
Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis
-
Kwiatkowski, Jr T. J. et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205-1208 (2009).
-
(2009)
Science
, vol.323
, pp. 1205-1208
-
-
Kwiatkowski Jr., T.J.1
-
5
-
-
61349162349
-
Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6
-
Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208-1211 (2009).
-
(2009)
Science
, vol.323
, pp. 1208-1211
-
-
Vance, C.1
-
6
-
-
77953890823
-
TDP-43 and FUS/TLS: Emerging roles in RNA processing and neurodegeneration
-
Lagier-Tourenne, C., Polymenidou, M. & Cleveland, D. W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 19, R46-R64 (2010).
-
(2010)
Hum. Mol. Genet.
, vol.19
-
-
Lagier-Tourenne, C.1
Polymenidou, M.2
Cleveland, D.W.3
-
7
-
-
84887510924
-
Mutations in the 3 untranslated region of FUS causing FUS overexpression are associated with amyotrophic lateral sclerosis
-
Sabatelli, M. et al. Mutations in the 3 untranslated region of FUS causing FUS overexpression are associated with amyotrophic lateral sclerosis. Hum. Mol. Genet. 22, 4748-4755 (2013).
-
(2013)
Hum. Mol. Genet.
, vol.22
, pp. 4748-4755
-
-
Sabatelli, M.1
-
8
-
-
84875427900
-
Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age-and dose-dependent fashion
-
Mitchell, J. C. et al. Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age-and dose-dependent fashion. Acta Neuropathol. 125, 273-288 (2013).
-
(2013)
Acta Neuropathol.
, vol.125
, pp. 273-288
-
-
Mitchell, J.C.1
-
9
-
-
0033968408
-
Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death
-
DOI 10.1038/72842
-
Hicks, G. G. et al. Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Nat. Genet. 24, 175-179 (2000). (Pubitemid 30094720)
-
(2000)
Nature Genetics
, vol.24
, Issue.2
, pp. 175-179
-
-
Hicks, G.G.1
Singh, N.2
Nashabi, A.3
Mai, S.4
Bozek, G.5
Klewes, L.6
Arapovic, D.7
White, E.K.8
Koury, M.J.9
Oltz, E.M.10
Van Kaer, L.11
Ruley, H.E.12
-
10
-
-
15744378126
-
The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology
-
DOI 10.1016/j.cub.2005.01.058
-
Fujii, R. et al. The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr. Biol. 15, 587-593 (2005). (Pubitemid 40413401)
-
(2005)
Current Biology
, vol.15
, Issue.6
, pp. 587-593
-
-
Fujii, R.1
Okabe, S.2
Urushido, T.3
Inoue, K.4
Yoshimura, A.5
Tachibana, T.6
Nishikawa, T.7
Hicks, G.G.8
Takumi, T.9
-
11
-
-
84887271147
-
ALS-associated FUS mutations result in compromised FUS alternative splicing and autoregulation
-
Zhou, Y., Liu, S., Liu, G., Oztürk, A. & Hicks, G. G. ALS-associated FUS mutations result in compromised FUS alternative splicing and autoregulation. PLoS Genet. 9, e1003895 (2013).
-
(2013)
PLoS Genet.
, vol.9
-
-
Zhou, Y.1
Liu, S.2
Liu, G.3
Oztürk, A.4
Hicks, G.G.5
-
12
-
-
60149095444
-
Most mammalian mRNAs are conserved targets of microRNAs
-
Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92-105 (2009).
-
(2009)
Genome Res.
, vol.19
, pp. 92-105
-
-
Friedman, R.C.1
Farh, K.K.2
Burge, C.B.3
Bartel, D.P.4
-
13
-
-
20944450160
-
Combinatorial microRNA target predictions
-
DOI 10.1038/ng1536
-
Krek, A. et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495-500 (2005). (Pubitemid 40617277)
-
(2005)
Nature Genetics
, vol.37
, Issue.5
, pp. 495-500
-
-
Krek, A.1
Grun, D.2
Poy, M.N.3
Wolf, R.4
Rosenberg, L.5
Epstein, E.J.6
MacMenamin, P.7
Da Piedade, I.8
Gunsalus, K.C.9
Stoffel, M.10
Rajewsky, N.11
-
14
-
-
77955497665
-
The role of the miR-200 family in epithelial-mesenchymal transition
-
Mongroo, P. S. & Rustgi, A. K. The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol. Ther. 10, 219-222 (2010).
-
(2010)
Cancer Biol. Ther.
, vol.10
, pp. 219-222
-
-
Mongroo, P.S.1
Rustgi, A.K.2
-
15
-
-
84893654539
-
MiR-200 a new star miRNA in human cancer
-
Feng, X., Wang, Z., Fillmore, R. & Xi, Y. MiR-200, a new star miRNA in human cancer. Cancer Lett. 344, 166-173 (2014).
-
(2014)
Cancer Lett.
, vol.344
, pp. 166-173
-
-
Feng, X.1
Wang, Z.2
Fillmore, R.3
Xi, Y.4
-
16
-
-
84871002507
-
FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment
-
Morlando, M. et al. FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO J. 31, 4502-4510 (2012).
-
(2012)
EMBO J.
, vol.31
, pp. 4502-4510
-
-
Morlando, M.1
-
17
-
-
41649091906
-
The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2
-
DOI 10.1101/gad.1640608
-
Park, S. M., Gaur, A. B., Lengyel, E. & Peter, M. E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894-907 (2008). (Pubitemid 351482843)
-
(2008)
Genes and Development
, vol.22
, Issue.7
, pp. 894-907
-
-
Park, S.-M.1
Gaur, A.B.2
Lengyel, E.3
Peter, M.E.4
-
18
-
-
44649163918
-
A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells
-
DOI 10.1038/embor.2008.74, PII EMBOR200874
-
Burk, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582-589 (2008). (Pubitemid 351772923)
-
(2008)
EMBO Reports
, vol.9
, Issue.6
, pp. 582-589
-
-
Burk, U.1
Schubert, J.2
Wellner, U.3
Schmalhofer, O.4
Vincan, E.5
Spaderna, S.6
Brabletz, T.7
-
19
-
-
54049084380
-
A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition
-
Bracken, C. P. et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68, 7846-7854 (2008).
-
(2008)
Cancer Res.
, vol.68
, pp. 7846-7854
-
-
Bracken, C.P.1
-
20
-
-
9144225636
-
The Microprocessor complex mediates the genesis of microRNAs
-
DOI 10.1038/nature03120
-
Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235-240 (2004). (Pubitemid 39545855)
-
(2004)
Nature
, vol.432
, Issue.7014
, pp. 235-240
-
-
Gregory, R.I.1
Yan, K.-P.2
Amuthan, G.3
Chendrimada, T.4
Doratotaj, B.5
Cooch, N.6
Shiekhattar, R.7
-
21
-
-
70350442963
-
Coupled RNA processing and transcription of intergenic primary microRNAs
-
Ballarino, M. et al. Coupled RNA processing and transcription of intergenic primary microRNAs. Mol. Cell. Biol. 29, 5632-5638 (2009).
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 5632-5638
-
-
Ballarino, M.1
-
22
-
-
84859986072
-
TLS/FUS (translocated in liposarcoma/fused in sarcoma) regulates target gene transcription via single-stranded DNA response elements
-
Tan, A. Y., Riley, T. R., Coady, T., Bussemaker, H. J. & Manley, J. L. TLS/FUS (translocated in liposarcoma/fused in sarcoma) regulates target gene transcription via single-stranded DNA response elements. Proc. Natl Acad. Sci. USA 109, 6030-6035 (2012).
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. 6030-6035
-
-
Tan, A.Y.1
Riley, T.R.2
Coady, T.3
Bussemaker, H.J.4
Manley, J.L.5
-
23
-
-
47849124269
-
Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways
-
Cogswell, J. P. et al. Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. J. Alzheimers Dis. 14, 27-41 (2008). (Pubitemid 352039013)
-
(2008)
Journal of Alzheimer's Disease
, vol.14
, Issue.1
, pp. 27-41
-
-
Cogswell, J.P.1
Ward, J.2
Taylor, I.A.3
Waters, M.4
Shi, Y.5
Cannon, B.6
Kelnar, K.7
Kemppainen, J.8
Brown, D.9
Chen, C.10
Prinjha, R.K.11
Richardson, J.C.12
Saunders, A.M.13
Roses, A.D.14
Richards, C.A.15
-
24
-
-
84867582241
-
Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin
-
Jin, J. et al. Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin. J. Neurochem. 123, 477-490 (2012).
-
(2012)
J. Neurochem.
, vol.123
, pp. 477-490
-
-
Jin, J.1
-
25
-
-
84887855885
-
TDP-43 regulates the microprocessor complex activity during in vitro neuronal differentiation
-
Di Carlo, V. et al. TDP-43 regulates the microprocessor complex activity during in vitro neuronal differentiation. Mol. Neurobiol. 48, 952-963 (2013).
-
(2013)
Mol. Neurobiol.
, vol.48
, pp. 952-963
-
-
Di Carlo, V.1
-
26
-
-
3042854926
-
A new vector, based on the polII promoter of the U1 snRNA gene, for the expression of siRNAs in mammalian cells
-
DOI 10.1016/j.ymthe.2004.04.008, PII S1525001604001388
-
Denti, M. A., Rosa, A., Sthandier, O., De Angelis, F. G. & Bozzoni, I. A new vector, based on the PolII promoter of the U1 snRNA gene, for the expression of siRNAs in mammalian cells. Mol. Ther. 10, 191-199 (2004). (Pubitemid 38878161)
-
(2004)
Molecular Therapy
, vol.10
, Issue.1
, pp. 191-199
-
-
Denti, M.A.1
Rosa, A.2
Sthandier, O.3
De Angelis, F.G.4
Bozzoni, I.5
-
27
-
-
78649832226
-
A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation
-
Laneve, P. et al. A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation. Nucleic Acids Res. 38, 6895-6905 (2010).
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 6895-6905
-
-
Laneve, P.1
-
28
-
-
84893747773
-
A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis
-
Legnini, I., Morlando, M., Mangiavacchi, A., Fatica, A. & Bozzoni, I. A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol. Cell 53, 506-514 (2014).
-
(2014)
Mol. Cell
, vol.53
, pp. 506-514
-
-
Legnini, I.1
Morlando, M.2
Mangiavacchi, A.3
Fatica, A.4
Bozzoni, I.5
-
29
-
-
84555189620
-
Promoter-associated noncoding RNA from the CCND1 promoter
-
Song, X., Wang, X., Arai, S. & Kurokawa, R. Promoter-associated noncoding RNA from the CCND1 promoter. Methods Mol. Biol. 809, 609-622 (2012).
-
(2012)
Methods Mol. Biol.
, vol.809
, pp. 609-622
-
-
Song, X.1
Wang, X.2
Arai, S.3
Kurokawa, R.4
-
30
-
-
0037066694
-
Quantitative assessment of gene targeting in vitro and in vivo by the pancreatic transcription factor, Pdx1. Importance of chromatin structure in directing promoter binding
-
DOI 10.1074/jbc.M111857200
-
Chakrabarti, S. K., James, J. C. & Mirmira, R. G. Quantitative assessment of gene targeting in vitro and in vivo by the pancreatic transcription factor, Pdx1. Importance of chromatin structure in directing promoter binding. J. Biol. Chem. 277, 13286-13293 (2002). (Pubitemid 34952700)
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.15
, pp. 13286-13293
-
-
Chakrabarti, S.K.1
James, J.C.2
Mirmira, R.G.3
-
31
-
-
42949179593
-
In vitro and in vivo assays for the activity of Drosha complex
-
Lee, Y. & Kim, V. N. In vitro and in vivo assays for the activity of Drosha complex. Methods Enzymol. 427, 89-106 (2007).
-
(2007)
Methods Enzymol.
, vol.427
, pp. 89-106
-
-
Lee, Y.1
Kim, V.N.2
|