-
1
-
-
0035799806
-
Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance
-
DOI 10.1056/NEJM200105033441801
-
J. Tuomilehto et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance N. Engl. J. Med. 344 2001 1343 1350 (Pubitemid 32378388)
-
(2001)
New England Journal of Medicine
, vol.344
, Issue.18
, pp. 1343-1350
-
-
Tuomilehto, J.1
Lindstrom, J.2
Eriksson, J.G.3
Valle, T.T.4
Hamalainen, H.5
Ianne-Parikka, P.6
Keinanen-Kiukaanniemi, S.7
Laakso, M.8
Louheranta, A.9
Rastas, M.10
Salminen, V.11
Uusitupa, M.12
-
2
-
-
84862493914
-
AMP-activated protein kinase: New regulation, new roles?
-
D. Carling et al. AMP-activated protein kinase: new regulation, new roles? Biochem. J. 445 2012 11 27
-
(2012)
Biochem. J.
, vol.445
, pp. 11-27
-
-
Carling, D.1
-
3
-
-
33751195101
-
AMP-activated protein kinase and the regulation of glucose transport
-
N. Fujii et al. AMP-activated protein kinase and the regulation of glucose transport Am. J. Physiol. Endocrinol. Metab. 291 2006 E867 E877
-
(2006)
Am. J. Physiol. Endocrinol. Metab.
, vol.291
-
-
Fujii, N.1
-
4
-
-
20044370885
-
Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction
-
DOI 10.1038/sj.emboj.7600667
-
K. Sakamoto et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction EMBO J. 24 2005 1810 1820 (Pubitemid 40769500)
-
(2005)
EMBO Journal
, vol.24
, Issue.10
, pp. 1810-1820
-
-
Sakamoto, K.1
McCarthy, A.2
Smith, D.3
Green, K.A.4
Hardie, D.G.5
Ashworth, A.6
Alessi, D.R.7
-
5
-
-
33751013309
-
Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3
-
H.J. Koh et al. Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3 Mol. Cell. Biol. 26 2006 8217 8227
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 8217-8227
-
-
Koh, H.J.1
-
6
-
-
23044437445
-
2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells
-
DOI 10.1016/j.cmet.2005.06.005, PII S1550413105001701
-
2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells Cell Metab. 2 2005 21 33 (Pubitemid 43239822)
-
(2005)
Cell Metabolism
, vol.2
, Issue.1
, pp. 21-33
-
-
Woods, A.1
Dickerson, K.2
Heath, R.3
Hong, S.-P.4
Momcilovic, M.5
Johnstone, S.R.6
Carlson, M.7
Carling, D.8
-
7
-
-
23044432463
-
Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase
-
DOI 10.1016/j.cmet.2005.05.009, PII S155041310500166X
-
S.A. Hawley et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase Cell Metab. 2 2005 9 19 (Pubitemid 43239821)
-
(2005)
Cell Metabolism
, vol.2
, Issue.1
, pp. 9-19
-
-
Hawley, S.A.1
Pan, D.A.2
Mustard, K.J.3
Ross, L.4
Bain, J.5
Edelman, A.M.6
Frenguelli, B.G.7
Hardie, D.G.8
-
8
-
-
79954517977
-
Structure of mammalian AMPK and its regulation by ADP
-
B. Xiao et al. Structure of mammalian AMPK and its regulation by ADP Nature 472 2011 230 233
-
(2011)
Nature
, vol.472
, pp. 230-233
-
-
Xiao, B.1
-
9
-
-
84877656993
-
Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals
-
K. Vissing et al. Differentiated mTOR but not AMPK signaling after strength vs endurance exercise in training-accustomed individuals Scand. J. Med. Sci. Sports 23 2013 355 366
-
(2013)
Scand. J. Med. Sci. Sports
, vol.23
, pp. 355-366
-
-
Vissing, K.1
-
10
-
-
33749351995
-
Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle
-
DOI 10.1113/jphysiol.2006.113175
-
H.C. Dreyer et al. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle J. Physiol. 576 2006 613 624 (Pubitemid 44490149)
-
(2006)
Journal of Physiology
, vol.576
, Issue.2
, pp. 613-624
-
-
Dreyer, H.C.1
Fujita, S.2
Cadenas, J.G.3
Chinkes, D.L.4
Volpi, E.5
Rasmussen, B.B.6
-
12
-
-
77957348890
-
Early time course of Akt phosphorylation after endurance and resistance exercise
-
D.M. Camera et al. Early time course of Akt phosphorylation after endurance and resistance exercise Med. Sci. Sports Exerc. 42 2010 1843 1852
-
(2010)
Med. Sci. Sports Exerc.
, vol.42
, pp. 1843-1852
-
-
Camera, D.M.1
-
13
-
-
27644468222
-
Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen
-
DOI 10.1113/jphysiol.2005.089839
-
G.K. McConell et al. Short-term exercise training in humans reduces AMPK signalling during prolonged exercise independent of muscle glycogen J. Physiol. 568 2005 665 676 (Pubitemid 41555465)
-
(2005)
Journal of Physiology
, vol.568
, Issue.2
, pp. 665-676
-
-
McConell, G.K.1
Lee-Young, R.S.2
Chen, Z.-P.3
Stepto, N.K.4
Huynh, N.N.5
Stephens, T.J.6
Canny, B.J.7
Kemp, B.E.8
-
14
-
-
32044465506
-
TOR signaling in growth and metabolism
-
DOI 10.1016/j.cell.2006.01.016, PII S0092867406001085
-
S. Wullschleger et al. TOR signaling in growth and metabolism Cell 124 2006 471 484 (Pubitemid 43199434)
-
(2006)
Cell
, vol.124
, Issue.3
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
15
-
-
1942469564
-
2446 Is a Novel Mammalian Target of Rapamycin (mTOR) Phosphorylation Site Regulated by Nutrient Status
-
DOI 10.1074/jbc.C300534200
-
S.W. Cheng et al. Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status J. Biol. Chem. 279 2004 15719 15722 (Pubitemid 38509255)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.16
, pp. 15719-15722
-
-
Cheng, S.W.Y.1
Fryer, L.G.D.2
Carling, D.3
Shepherd, P.R.4
-
16
-
-
0345167800
-
TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival
-
DOI 10.1016/S0092-8674(03)00929-2
-
K. Inoki et al. TSC2 mediates cellular energy response to control cell growth and survival Cell 115 2003 577 590 (Pubitemid 37506046)
-
(2003)
Cell
, vol.115
, Issue.5
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.-L.3
-
17
-
-
42949139481
-
AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint
-
DOI 10.1016/j.molcel.2008.03.003, PII S109727650800169X
-
D.M. Gwinn et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint Mol. Cell 30 2008 214 226 (Pubitemid 351626684)
-
(2008)
Molecular Cell
, vol.30
, Issue.2
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
Turk, B.E.7
Shaw, R.J.8
-
18
-
-
0037143449
-
Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis
-
DOI 10.1016/S0960-9822(02)01077-1, PII S0960982202010771
-
S. Horman et al. Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis Curr. Biol. 12 2002 1419 1423 (Pubitemid 34915545)
-
(2002)
Current Biology
, vol.12
, Issue.16
, pp. 1419-1423
-
-
Horman, S.1
Browne, G.J.2
Krause, U.3
Patel, J.V.4
Vertommen, D.5
Bertrand, L.6
Lavoinne, A.7
Hue, L.8
Proud, C.G.9
Rider, M.H.10
-
19
-
-
63849188637
-
A Ca(2+)-calmodulin-eEF2K-eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions
-
A.J. Rose et al. A Ca(2+)-calmodulin-eEF2K-eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions J. Physiol. 587 2009 1547 1563
-
(2009)
J. Physiol.
, vol.587
, pp. 1547-1563
-
-
Rose, A.J.1
-
20
-
-
12144287284
-
LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1
-
DOI 10.1038/sj.emboj.7600110
-
J.M. Lizcano et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1 EMBO J. 23 2004 833 843 (Pubitemid 38418750)
-
(2004)
EMBO Journal
, vol.23
, Issue.4
, pp. 833-843
-
-
Lizcano, J.M.1
Goransson, O.2
Toth, R.3
Deak, M.4
Morrice, N.A.5
Boudeau, J.6
Hawley, S.A.7
Udd, L.8
Makela, T.P.9
Hardie, D.G.10
Alessi, D.R.11
-
21
-
-
77953808195
-
Ablation of LKB1 in the heart leads to energy deprivation and impaired cardiac function
-
N. Jessen et al. Ablation of LKB1 in the heart leads to energy deprivation and impaired cardiac function Biochim. Biophys. Acta 1802 2010 593 600
-
(2010)
Biochim. Biophys. Acta
, vol.1802
, pp. 593-600
-
-
Jessen, N.1
-
22
-
-
72149093508
-
Cardiac-specific deletion of LKB1 leads to hypertrophy and dysfunction
-
Y. Ikeda et al. Cardiac-specific deletion of LKB1 leads to hypertrophy and dysfunction J. Biol. Chem. 284 2009 35839 35849
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 35839-35849
-
-
Ikeda, Y.1
-
23
-
-
30744439347
-
Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans
-
DOI 10.1096/fj.05-4809fje
-
V.G. Coffey et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans FASEB J. 20 2006 190 192 (Pubitemid 43100510)
-
(2006)
FASEB Journal
, vol.20
, Issue.1
, pp. 190-192
-
-
Coffey, V.G.1
Zhong, Z.2
Shield, A.3
Canny, B.J.4
Chibalin, A.V.5
Zierath, J.R.6
Hawley, J.A.7
-
24
-
-
0037369214
-
A forty-year memoir of research on the regulation of glucose transport into muscle
-
J.O. Holloszy A forty-year memoir of research on the regulation of glucose transport into muscle Am. J. Physiol. Endocrinol. Metab. 284 2003 E453 E467
-
(2003)
Am. J. Physiol. Endocrinol. Metab.
, vol.284
-
-
Holloszy, J.O.1
-
26
-
-
0035155821
-
Chronic treatment with 5-aminoimidazole-4-carboxamide-1-β-D- ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner
-
E.S. Buhl et al. Chronic treatment with 5-aminoimidazole-4-carboxamide-1- beta-d-ribofuranoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner Diabetes 50 2001 12 17 (Pubitemid 32047974)
-
(2001)
Diabetes
, vol.50
, Issue.1
, pp. 12-17
-
-
Buhl, E.S.1
Jessen, N.2
Schmitz, O.3
Pedersen, S.B.4
Pedersen, O.5
Holman, G.D.6
Lund, S.7
-
27
-
-
0037379283
-
Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles
-
N. Jessen et al. Effects of AICAR and exercise on insulin-stimulated glucose uptake, signaling, and GLUT-4 content in rat muscles J. Appl. Physiol. 94 2003 1373 1379 (Pubitemid 36348812)
-
(2003)
Journal of Applied Physiology
, vol.94
, Issue.4
, pp. 1373-1379
-
-
Jessen, N.1
Pold, R.2
Buhl, E.S.3
Jensen, L.S.4
Schmitz, O.5
Lund, S.6
-
28
-
-
0037058977
-
AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation
-
DOI 10.1073/pnas.252625599
-
H. Zong et al. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation Proc. Natl. Acad. Sci. U. S. A. 99 2002 15983 15987 (Pubitemid 35462735)
-
(2002)
Proceedings of the National Academy of Sciences of the United States of America
, vol.99
, Issue.25
, pp. 15983-15987
-
-
Zong, H.1
Ren, J.M.2
Young, L.H.3
Pypaert, M.4
Mu, J.5
Birnbaum, M.J.6
Shulman, G.I.7
-
29
-
-
21744463063
-
Effects of α-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle
-
DOI 10.1096/fj.04-3144fje
-
S.B. Jorgensen et al. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle FASEB J. 19 2005 1146 1148 (Pubitemid 40946446)
-
(2005)
FASEB Journal
, vol.19
, Issue.9
, pp. 1146-1148
-
-
Jorgensen, S.B.1
Wojtaszewski, J.F.P.2
Viollet, B.3
Andreelli, F.4
Birk, J.B.5
Hellsten, Y.6
Schjerling, P.7
Vaulont, S.8
Neufer, P.D.9
Richter, E.A.10
Pilegaard, H.11
-
30
-
-
4544386858
-
AMP kinase is not required for the GLUT4 response to exercise and denervation in skeletal muscle
-
B.F. Holmes et al. AMP kinase is not required for the GLUT4 response to exercise and denervation in skeletal muscle Am. J. Physiol. Endocrinol. Metab. 287 2004 E739 E743
-
(2004)
Am. J. Physiol. Endocrinol. Metab.
, vol.287
-
-
Holmes, B.F.1
-
31
-
-
20144386698
-
Long-term AICAR administration and exercise prevents diabetes in ZDF rats
-
DOI 10.2337/diabetes.54.4.928
-
R. Pold et al. Long-term AICAR administration and exercise prevents diabetes in ZDF rats Diabetes 54 2005 928 934 (Pubitemid 40446305)
-
(2005)
Diabetes
, vol.54
, Issue.4
, pp. 928-934
-
-
Pold, R.1
Jensen, L.S.2
Jessen, N.3
Buhl, E.S.4
Schmitz, O.5
Flyvbjerg, A.6
Fujii, N.7
Goodyear, L.J.8
Gotfredsen, C.F.9
Brand, C.L.10
Lund, S.11
-
32
-
-
84863393597
-
Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis
-
C. He et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis Nature 481 2012 511 515
-
(2012)
Nature
, vol.481
, pp. 511-515
-
-
He, C.1
-
33
-
-
84885145785
-
Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance
-
V.A. Lira et al. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance FASEB J. 27 2013 4184 4193
-
(2013)
FASEB J.
, vol.27
, pp. 4184-4193
-
-
Lira, V.A.1
-
34
-
-
82855169509
-
Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles
-
P. Grumati et al. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles Autophagy 7 2011 1415 1423
-
(2011)
Autophagy
, vol.7
, pp. 1415-1423
-
-
Grumati, P.1
-
35
-
-
84864885324
-
Autophagy-related and autophagy-regulatory genes are induced in human muscle after ultraendurance exercise
-
C. Jamart et al. Autophagy-related and autophagy-regulatory genes are induced in human muscle after ultraendurance exercise Eur. J. Appl. Physiol. 112 2012 3173 3177
-
(2012)
Eur. J. Appl. Physiol.
, vol.112
, pp. 3173-3177
-
-
Jamart, C.1
-
36
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
D.F. Egan et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy Science 331 2011 456 461
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
-
37
-
-
84855532023
-
AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1
-
A.M. Sanchez et al. AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1 J. Cell. Biochem. 113 2012 695 710
-
(2012)
J. Cell. Biochem.
, vol.113
, pp. 695-710
-
-
Sanchez, A.M.1
-
38
-
-
78149476877
-
The association of AMPK with ULK1 regulates autophagy
-
J.W. Lee et al. The association of AMPK with ULK1 regulates autophagy PLoS ONE 5 2010 e15394
-
(2010)
PLoS ONE
, vol.5
, pp. 15394
-
-
Lee, J.W.1
-
39
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
J. Kim et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 Nat. Cell Biol. 13 2011 132 141
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
-
40
-
-
81155123729
-
The serine/threonine kinase ULK1 is a target of multiple phosphorylation events
-
M. Bach et al. The serine/threonine kinase ULK1 is a target of multiple phosphorylation events Biochem. J. 440 2011 283 291
-
(2011)
Biochem. J.
, vol.440
, pp. 283-291
-
-
Bach, M.1
-
41
-
-
84866061320
-
AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization
-
H.I. Mack et al. AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization Autophagy 8 2012 1197 1214
-
(2012)
Autophagy
, vol.8
, pp. 1197-1214
-
-
Mack, H.I.1
-
42
-
-
79959963047
-
Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop
-
A.S. Loffler et al. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop Autophagy 7 2011 696 706
-
(2011)
Autophagy
, vol.7
, pp. 696-706
-
-
Loffler, A.S.1
|