메뉴 건너뛰기




Volumn 4, Issue SEP, 2013, Pages

Evaluating statistical analysis models for RNA sequencing experiments

Author keywords

Linear models; Plasmodes; RNA seq; Simulation; Type I error

Indexed keywords


EID: 84885962211     PISSN: None     EISSN: 16648021     Source Type: Journal    
DOI: 10.3389/fgene.2013.00178     Document Type: Article
Times cited : (27)

References (45)
  • 1
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • doi:10.1186/gb-2010-11-10-r106
    • Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol. 11:R106. doi:10.1186/gb-2010-11-10-r106.
    • (2010) Genome Biol. , vol.11
    • Anders, S.1    Huber, W.2
  • 2
    • 77955504378 scopus 로고    scopus 로고
    • Statistical design and analysis of RNA sequencing data
    • doi:10.1534/genetics.110.114983
    • Auer, P. L., and Doerge, R. W. (2010). Statistical design and analysis of RNA sequencing data. Genetics 185, 405-416. doi:10.1534/genetics.110.114983.
    • (2010) Genetics , vol.185 , pp. 405-416
    • Auer, P.L.1    Doerge, R.W.2
  • 3
    • 79958115654 scopus 로고    scopus 로고
    • A two-stage poisson model for testing RNA-Seq data
    • doi:10.2202/1544-6115.1627
    • Auer, P. L., and Doerge, R. W. (2011). A two-stage poisson model for testing RNA-Seq data. Stat. Appl. Genet. Mol. Biol. 10, 1-28. doi:10.2202/1544-6115.1627.
    • (2011) Stat. Appl. Genet. Mol. Biol. , vol.10 , pp. 1-28
    • Auer, P.L.1    Doerge, R.W.2
  • 4
    • 84892844328 scopus 로고    scopus 로고
    • lme4:Linear and Mixed-Effects Models Using S4 Classes
    • Bates, D., Maechler, M., and Bolker, B. (2013). lme4:Linear and Mixed-Effects Models Using S4 Classes. R package version 0.999999-2. Available online at:http://CRAN.R-project.org/package=lme4
    • (2013) R package Version 0.999999-2
    • Bates, D.1    Maechler, M.2    Bolker, B.3
  • 5
    • 0001677717 scopus 로고
    • Controlling the false discovery rate-a practical and powerful approach to multiple testing
    • Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate-a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289-300.
    • (1995) J. R. Stat. Soc. Ser. B Methodol. , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 6
    • 75649102520 scopus 로고    scopus 로고
    • Sex-specific and lineage-specific alternative splicing in primates
    • doi:10.1101/gr.099226.109.
    • Blekhman, R., Marioni, J. C., Zumbo, P., Stephens, M., and Gilad, Y. (2010). Sex-specific and lineage-specific alternative splicing in primates. Genome Res. 20, 180-189. doi:10.1101/gr.099226.109.
    • (2010) Genome Res. , vol.20 , pp. 180-189
    • Blekhman, R.1    Marioni, J.C.2    Zumbo, P.3    Stephens, M.4    Gilad, Y.5
  • 7
    • 79953034289 scopus 로고    scopus 로고
    • Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays
    • doi:10.1371/journal.pone.0017820
    • Bottomly, D., Walter, N. A. R., Hunter, J. E., Darakjian, P., Kawane, S., Buck, K. J., et al. (2011). Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays. PLoS ONE 6:e17820. doi:10.1371/journal.pone.0017820.
    • (2011) PLoS ONE , vol.6
    • Bottomly, D.1    Walter, N.A.R.2    Hunter, J.E.3    Darakjian, P.4    Kawane, S.5    Buck, K.J.6
  • 8
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • doi:10.1186/1471-2105-11-94
    • Bullard, J. H., Purdom, E., Hansen, K. D., and Dudoit, S. (2010). Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11:94. doi:10.1186/1471-2105-11-94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3    Dudoit, S.4
  • 9
    • 77957920003 scopus 로고    scopus 로고
    • Polymorphic Cis-and Trans-regulation of human gene expression
    • doi:10.1371/journal.pbio.1000480
    • Cheung, V. G., Nayak, R. R., Wang, I. X., Elwyn, S., Cousins, S. M., Morley, M., et al. (2010). Polymorphic Cis-and Trans-regulation of human gene expression. PLoS Biol. 8:e1000480. doi:10.1371/journal.pbio.1000480.
    • (2010) PLoS Biol. , vol.8
    • Cheung, V.G.1    Nayak, R.R.2    Wang, I.X.3    Elwyn, S.4    Cousins, S.M.5    Morley, M.6
  • 10
    • 24144445705 scopus 로고    scopus 로고
    • Improved statistical tests for differential gene expression by shrinking variance components estimates
    • doi:10.1093/biostatistics/kxh018
    • Cui, X., Hwang, J. T. G., Qiu, J., Blades, N. J., and Churchill, G. A. (2005). Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics 6, 59-75. doi:10.1093/biostatistics/kxh018.
    • (2005) Biostatistics , vol.6 , pp. 59-75
    • Cui, X.1    Hwang, J.T.G.2    Qiu, J.3    Blades, N.J.4    Churchill, G.A.5
  • 11
    • 79958117254 scopus 로고    scopus 로고
    • The NBP negative binomial model for assessing differential gene expression from RNA-Seq
    • doi:10.2202/1544-6115.1637.
    • Di, Y., Schafer, D. W., Cumbie, J. S., and Chang, J. H. (2011). The NBP negative binomial model for assessing differential gene expression from RNA-Seq. Stat. Appl. Genet. Mol. Biol. 10. doi:10.2202/1544-6115.1637.
    • (2011) Stat. Appl. Genet. Mol. Biol. , pp. 10
    • Di, Y.1    Schafer, D.W.2    Cumbie, J.S.3    Chang, J.H.4
  • 13
    • 81055124271 scopus 로고    scopus 로고
    • ReCount:a multi-experiment resource of analysis-ready RNA-seq gene count datasets
    • doi:10.1186/1471-2105-12-449.
    • Frazee, A., Langmead, B., and Leek, J. (2011). ReCount:a multi-experiment resource of analysis-ready RNA-seq gene count datasets. BMC Bioinformatics 12:449. doi:10.1186/1471-2105-12-449.
    • (2011) BMC Bioinformatics , vol.12 , pp. 449
    • Frazee, A.1    Langmead, B.2    Leek, J.3
  • 14
    • 46249095552 scopus 로고    scopus 로고
    • Evaluating statistical methods using plasmode data sets in the age of massive public databases:an illustration using false discovery rates
    • doi:10.1371/journal.pgen.1000098
    • Gadbury, G. L., Xiang, Q., Yang, L., Barnes, S., Page, G. P., and Allison, D. B. (2008). Evaluating statistical methods using plasmode data sets in the age of massive public databases:an illustration using false discovery rates. PLoS Genet. 4:e1000098. doi:10.1371/journal.pgen.1000098.
    • (2008) PLoS Genet. , vol.4
    • Gadbury, G.L.1    Xiang, Q.2    Yang, L.3    Barnes, S.4    Page, G.P.5    Allison, D.B.6
  • 15
    • 28744458859 scopus 로고    scopus 로고
    • Bioconductor:open software development for computational biology and bioinformatics
    • doi:10.1186/gb-2004-5-10-r80
    • Gentleman, R., Carey, V., Bates, D., Bolstad, B., Dettling, M., Dudoit, S., et al. (2004). Bioconductor:open software development for computational biology and bioinformatics. Genome Biol. 5:R80. doi:10.1186/gb-2004-5-10-r80.
    • (2004) Genome Biol. , vol.5
    • Gentleman, R.1    Carey, V.2    Bates, D.3    Bolstad, B.4    Dettling, M.5    Dudoit, S.6
  • 16
    • 77955298482 scopus 로고    scopus 로고
    • baySeq:empirical Bayesian methods for identifying differential expression in sequence count data
    • doi:10.1186/1471-2105-11-422
    • Hardcastle, T. J., and Kelly, K. A. (2010). baySeq:empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11:422. doi:10.1186/1471-2105-11-422.
    • (2010) BMC Bioinformatics , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 17
    • 84855162597 scopus 로고    scopus 로고
    • Using Poisson mixed-effects model to quantify transcript-level gene expression in RNA-Seq
    • doi:10.1093/bioinformatics/btr616
    • Hu, M., Zhu, Y., Taylor, J. M. G., Liu, J. S., and Qin, Z. S. (2011). Using Poisson mixed-effects model to quantify transcript-level gene expression in RNA-Seq. Bioinformatics 28, 63-68. doi:10.1093/bioinformatics/btr616.
    • (2011) Bioinformatics , vol.28 , pp. 63-68
    • Hu, M.1    Zhu, Y.2    Taylor, J.M.G.3    Liu, J.S.4    Qin, Z.S.5
  • 18
    • 77955343193 scopus 로고    scopus 로고
    • Cloud-scale RNA-sequencing differential expression analysis with Myrna
    • doi:10.1186/gb-2010-11-8-r83
    • Langmead, B., Hansen, K. D., and Leek, J. T. (2010). Cloud-scale RNA-sequencing differential expression analysis with Myrna. Genome Biol. 11:R83. doi:10.1186/gb-2010-11-8-r83.
    • (2010) Genome Biol. , vol.11
    • Langmead, B.1    Hansen, K.D.2    Leek, J.T.3
  • 19
    • 79958147350 scopus 로고    scopus 로고
    • The joint null criterion for multiple hypothesis tests
    • doi:10.2202/1544-6115.1673
    • Leek, J. T., and Storey, J. D. (2011). The joint null criterion for multiple hypothesis tests. Stat. Appl. Genet. Mol. Biol. 10, 1-22. doi:10.2202/1544-6115.1673.
    • (2011) Stat. Appl. Genet. Mol. Biol. , vol.10 , pp. 1-22
    • Leek, J.T.1    Storey, J.D.2
  • 20
    • 84863562292 scopus 로고    scopus 로고
    • Normalization, testing, and false discovery rate estimation for RNA-sequencing data
    • doi:10.1093/biostatistics/kxr031
    • Li, J., Witten, D. M., Johnstone, I. M., and Tibshirani, R. (2012). Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics 13, 523-538. doi:10.1093/biostatistics/kxr031.
    • (2012) Biostatistics , vol.13 , pp. 523-538
    • Li, J.1    Witten, D.M.2    Johnstone, I.M.3    Tibshirani, R.4
  • 21
    • 50649089207 scopus 로고    scopus 로고
    • RNA-seq:an assessment of technical reproducibility and comparison with gene expression arrays
    • doi:10.1101/gr.079558.108
    • Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., and Gilad, Y. (2008). RNA-seq:an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18, 1509-1517. doi:10.1101/gr.079558.108.
    • (2008) Genome Res. , vol.18 , pp. 1509-1517
    • Marioni, J.C.1    Mason, C.E.2    Mane, S.M.3    Stephens, M.4    Gilad, Y.5
  • 22
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • doi:10.1093/nar/gks042
    • McCarthy, D. J., Chen, Y., and Smyth, G. K. (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288-4297. doi:10.1093/nar/gks042.
    • (2012) Nucleic Acids Res. , vol.40 , pp. 4288-4297
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 23
    • 34247884263 scopus 로고    scopus 로고
    • Epistemological issues in omics and high-dimensional biology:give the people what they want
    • doi:10.1152/physiolgenomics.00095.2006
    • Mehta, T. S., Zakharkin, S. O., Gadbury, G. L., and Allison, D. B. (2006). Epistemological issues in omics and high-dimensional biology:give the people what they want. Physiol. Genomics 28, 24-32. doi:10.1152/physiolgenomics.00095.2006.
    • (2006) Physiol. Genomics , vol.28 , pp. 24-32
    • Mehta, T.S.1    Zakharkin, S.O.2    Gadbury, G.L.3    Allison, D.B.4
  • 24
    • 4444371602 scopus 로고    scopus 로고
    • Towards sound epistemological foundations of statistical methods for high-dimensional biology
    • doi:10.1038/ng1422
    • Mehta, T., Tanik, M., and Allison, D. B. (2004). Towards sound epistemological foundations of statistical methods for high-dimensional biology. Nat. Genet. 36, 943-947. doi:10.1038/ng1422.
    • (2004) Nat. Genet. , vol.36 , pp. 943-947
    • Mehta, T.1    Tanik, M.2    Allison, D.B.3
  • 25
    • 78751570979 scopus 로고    scopus 로고
    • RNA sequencing:advances, challenges and opportunities
    • doi:10.1038/nrg2934
    • Ozsolak, F., and Milos, P. M. (2011). RNA sequencing:advances, challenges and opportunities. Nat. Rev. Genet. 12, 87-98. doi:10.1038/nrg2934.
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 87-98
    • Ozsolak, F.1    Milos, P.M.2
  • 26
    • 84856097140 scopus 로고    scopus 로고
    • Models for transcript quantification from RNA-Seq
    • eprint:arXiv:1104.3889v2 [q-bio. GN].
    • Pachter, L. (2011). Models for transcript quantification from RNA-Seq. Genomics Methodol. eprint:arXiv:1104.3889v2 [q-bio. GN].
    • (2011) Genomics Methodol
    • Pachter, L.1
  • 27
    • 84883331680 scopus 로고    scopus 로고
    • Comprehensive evaluation of differential expression analysis methods for RNA-seq data
    • eprint:arXiv:1301.5277[q-bio. GN].
    • Rapaport, F., Khanin, R., Liang, Y., Krek, A., Zumbo, P., Mason, C. E., et al. (2013). Comprehensive evaluation of differential expression analysis methods for RNA-seq data. Genomics Quant. Methods. eprint:arXiv:1301.5277[q-bio. GN].
    • (2013) Genomics Quant. Methods
    • Rapaport, F.1    Khanin, R.2    Liang, Y.3    Krek, A.4    Zumbo, P.5    Mason, C.E.6
  • 28
    • 84907095419 scopus 로고    scopus 로고
    • R:A Language and Environment For Statistical Computing
    • R Core Team.
    • R Core Team. (2013). R:A Language and Environment For Statistical Computing. Vienna:R Foundation for Statistical Computing. Available online at:http://www.R-project.org/
    • (2013) Vienna:R Foundation for Statistical Computing
  • 29
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR:a bioconductor package for differential expression analysis of digital gene expression data
    • doi:10.1093/bioinformatics/btp616.
    • Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR:a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140. doi:10.1093/bioinformatics/btp616.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 30
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • doi:10.1186/gb-2010-11-3-r25
    • Robinson, M. D., and Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11:R25. doi:10.1186/gb-2010-11-3-r25.
    • (2010) Genome Biol. , vol.11
    • Robinson, M.D.1    Oshlack, A.2
  • 31
    • 41149085992 scopus 로고    scopus 로고
    • Small-sample estimation of negative binomial dispersion, with applications to SAGE data
    • doi:10.1093/biostatistics/kxm030
    • Robinson, M. D., and Smyth, G. K. (2008). Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9, 321-332. doi:10.1093/biostatistics/kxm030.
    • (2008) Biostatistics , vol.9 , pp. 321-332
    • Robinson, M.D.1    Smyth, G.K.2
  • 32
    • 84866158885 scopus 로고    scopus 로고
    • Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing
    • doi:10.1186/1471-2164-13-484
    • Robles, J. A, Qureshi, S. E., Stephen, S. J., Wilson, S. R., Burden, C. J., et al. (2012). Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing. BMC Genomics 13:484. doi:10.1186/1471-2164-13-484.
    • (2012) BMC Genomics , vol.13 , pp. 484
    • Robles J.A Qureshi, S.E.1    Stephen, S.J.2    Wilson, S.R.3    Burden, C.J.4
  • 33
    • 18844414500 scopus 로고    scopus 로고
    • Reassessing design and analysis of two-colour microarray experiments using mixed effects models
    • doi:10.1002/cfg.464
    • Rosa, G. J. M., Steibel, J. P., and Tempelman, R. J. (2005). Reassessing design and analysis of two-colour microarray experiments using mixed effects models. Comp. Funct. Genomics 6, 123-131. doi:10.1002/cfg.464.
    • (2005) Comp. Funct. Genomics , vol.6 , pp. 123-131
    • Rosa, G.J.M.1    Steibel, J.P.2    Tempelman, R.J.3
  • 34
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • doi:10.2202/1544-6115.1027
    • Smyth, G. K. (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3:3. doi:10.2202/1544-6115.1027.
    • (2004) Stat. Appl. Genet. Mol. Biol. , vol.3 , pp. 3
    • Smyth, G.K.1
  • 35
    • 33644872577 scopus 로고    scopus 로고
    • Limma:linear models for microarray data
    • eds R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, and W. Huber (New York, NY:Springer), doi:10.1007/0-387-29362-0_23.
    • Smyth, G. K. (2005). "Limma:linear models for microarray data," in Bioinformatics, eds R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, and W. Huber (New York, NY:Springer), 397-420. doi:10.1007/0-387-29362-0_23.
    • (2005) Bioinformatics , pp. 397-420
    • Smyth, G.K.1
  • 36
    • 14644422057 scopus 로고    scopus 로고
    • limma:Linear Models for Microarray Data User' s Guide
    • Melbourne, VIC:Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research.
    • Smyth, G. K., Ritchie, M., and Thorne, N. (2012). limma:Linear Models for Microarray Data User' s Guide (Now Including RNA-Seq Data Analysis). Melbourne, VIC:Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research.
    • (2012) Including RNA-Seq Data Analysis
    • Smyth, G.K.1    Ritchie, M.2    Thorne, N.3
  • 37
    • 80255122692 scopus 로고    scopus 로고
    • Transcriptional profiling during foetal skeletal muscle development of Piau and Yorkshire-Landrace cross-bred pigs
    • doi:10.1111/j.1365-2052.2011.02186.x.
    • Sollero, B. P., Guimarães, S. E. F., Rilington, V. D., Tempelman, R. J., Raney, N. E., Steibel, J. P., et al. (2011). Transcriptional profiling during foetal skeletal muscle development of Piau and Yorkshire-Landrace cross-bred pigs. Anim. Genet. 42, 600-612. doi:10.1111/j.1365-2052.2011.02186.x.
    • (2011) Anim. Genet. , vol.42 , pp. 600-612
    • Sollero, B.P.1    Guimarães, S.E.F.2    Rilington, V.D.3    Tempelman, R.J.4    Raney, N.E.5    Steibel, J.P.6
  • 38
    • 85052549687 scopus 로고    scopus 로고
    • A two-parameter generalized Poisson model to improve the analysis of RNA-seq data
    • doi:10.1093/nar/gkq670
    • Srivastava, S., and Chen, L. (2010). A two-parameter generalized Poisson model to improve the analysis of RNA-seq data. Nucleic Acids Res. 38, e170. doi:10.1093/nar/gkq670.
    • (2010) Nucleic Acids Res. , vol.38
    • Srivastava, S.1    Chen, L.2
  • 39
    • 67649989162 scopus 로고    scopus 로고
    • A powerful and flexible linear mixed model framework for the analysis of relative quantification RT-PCR data
    • doi:10.1016/j.ygeno.2009.04.008
    • Steibel, J. P., Poletto, R., Coussens, P. M., and Rosa, G. J. M. (2009). A powerful and flexible linear mixed model framework for the analysis of relative quantification RT-PCR data. Genomics 94, 146-152. doi:10.1016/j.ygeno.2009.04.008.
    • (2009) Genomics , vol.94 , pp. 146-152
    • Steibel, J.P.1    Poletto, R.2    Coussens, P.M.3    Rosa, G.J.M.4
  • 40
    • 0036020892 scopus 로고    scopus 로고
    • A direct approach to false discovery rates
    • doi:10.1111/1467-9868.00346
    • Storey, J. D. (2002). A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 479-498. doi:10.1111/1467-9868.00346.
    • (2002) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.64 , pp. 479-498
    • Storey, J.D.1
  • 41
    • 0242287052 scopus 로고    scopus 로고
    • Statistical methods for identifying differentially expressed genes in DNA microarrays
    • doi:10.1385/1-59259-364-X:149
    • Storey, J. D., and Tibshirani, R. (2003). Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol. Biol. 224, 149-157. doi:10.1385/1-59259-364-X:149.
    • (2003) Methods Mol. Biol. , vol.224 , pp. 149-157
    • Storey, J.D.1    Tibshirani, R.2
  • 42
    • 60349122378 scopus 로고    scopus 로고
    • The use of plasmodes as a supplement to simulations:a simple example evaluating individual admixture estimation methodologies
    • doi:10.1016/j.csda.2008.02.032
    • Vaughan, L. K., Divers, J., Padilla, M., Redden, D. T., Tiwari, H. K., Pomp, D., et al. (2009). The use of plasmodes as a supplement to simulations:a simple example evaluating individual admixture estimation methodologies. Comput. Stat. Data Anal. 53, 1755-1766. doi:10.1016/j.csda.2008.02.032.
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 1755-1766
    • Vaughan, L.K.1    Divers, J.2    Padilla, M.3    Redden, D.T.4    Tiwari, H.K.5    Pomp, D.6
  • 43
    • 84871184589 scopus 로고    scopus 로고
    • Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors
    • doi:10.1093/biostatistics/kxs031.
    • Van De Wiel, M. A, Leday, G. G. R., Pardo, L., Rue, H., Van Der Vaart, A. W., et al. (2013). Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors. Biostatistics 113-128. doi:10.1093/biostatistics/kxs031.
    • (2013) Biostatistics , pp. 113-128
    • Van De Wiel, M.A.1    Leday, G.G.R.2    Pardo, L.3    Rue, H.4    Van Der Vaart, A.W.5
  • 44
    • 33845913494 scopus 로고    scopus 로고
    • Estimating p-values in small microarray experiments
    • doi:10.1093/bioinformatics/btl548
    • Yang, H., and Churchill, G. (2007). Estimating p-values in small microarray experiments. Bioinformatics 23, 38-43. doi:10.1093/bioinformatics/btl548.
    • (2007) Bioinformatics , vol.23 , pp. 38-43
    • Yang, H.1    Churchill, G.2
  • 45
    • 80053451880 scopus 로고    scopus 로고
    • A powerful and flexible approach to the analysis of RNA sequence count data
    • doi:10.1093/bioinformatics/btr449
    • Zhou, Y.-H., Xia, K., and Wright, F. A. (2011). A powerful and flexible approach to the analysis of RNA sequence count data. Bioinformatics 27, 2672-2678. doi:10.1093/bioinformatics/btr449.
    • (2011) Bioinformatics , vol.27 , pp. 2672-2678
    • Zhou, Y.-H.1    Xia, K.2    Wright, F.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.