-
2
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, (6):1817-1853, 2005.
-
(2005)
Journal of Machine Learning Research
, Issue.6
, pp. 1817-1853
-
-
Ando, R.K.1
Zhang, T.2
-
3
-
-
0000708831
-
Mixture of dirichlet process with applications to Bayesian nonpara-metric problems
-
Charles E. Antoniak. Mixture of Dirichlet process with applications to Bayesian nonpara-metric problems. Annals of Statistics, (273):1152-1174, 1974.
-
(1974)
Annals of Statistics
, Issue.273
, pp. 1152-1174
-
-
Antoniak, C.E.1
-
5
-
-
0346238931
-
Task clustering and gating for Bayesian multitask learning
-
Bart Bakker and Tom Heskes. Task clustering and gating for Bayesian multitask learning. Journal of Machine Learning Research, (4):83-99, 2003.
-
(2003)
Journal of Machine Learning Research
, Issue.4
, pp. 83-99
-
-
Bakker, B.1
Heskes, T.2
-
6
-
-
0033438067
-
The consistency of posterior distributions in nonparametric problems
-
Andrew Barron, Mark Schervish, and Larry Wasserman. The consistency of posterior distributions in nonparametric problems. The Annals of Statistics, 27(2):536-561, 1999.
-
(1999)
The Annals of Statistics
, vol.27
, Issue.2
, pp. 536-561
-
-
Barron, A.1
Schervish, M.2
Wasserman, L.3
-
15
-
-
84867776237
-
Large-margin predictive latent subspace learning for multiview data analysis
-
Ning Chen, Jun Zhu, Fuchun Sun, and Eric P. Xing. Large-margin predictive latent subspace learning for multiview data analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), 34(12):2365-2378, 2012.
-
(2012)
IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI)
, vol.34
, Issue.12
, pp. 2365-2378
-
-
Chen, N.1
Zhu, J.2
Sun, F.3
Xing, E.P.4
-
16
-
-
84896874844
-
Learning harmonium models with infinite latent features
-
Ning Chen, Jun Zhu, Fuchun Sun, and Bo Zhang. Learning harmonium models with infinite latent features. IEEE Transactions on Neural Networks and Learning Systems, 25(3): 520-532, 2014.
-
(2014)
IEEE Transactions on Neural Networks and Learning Systems
, vol.25
, Issue.3
, pp. 520-532
-
-
Chen, N.1
Zhu, J.2
Sun, F.3
Zhang, B.4
-
18
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B, 39(1):1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society. Series B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
20
-
-
34250663051
-
Maximum entropy density estimation with generalized regularization and an application to species distribution modeling
-
Mirosla Dudík, Steven J. Phillips, and Robert E. Schapire. Maximum entropy density estimation with generalized regularization and an application to species distribution modeling. Journal of Machine Learning Research, (8):1217-1260, 2007. (Pubitemid 46945617)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1217-1260
-
-
Dudik, M.1
Phillips, S.J.2
Schapire, R.E.3
-
21
-
-
84860603459
-
Bayesian nonparametric inferences on stochastic ordering
-
David Dunson and Shyamal Peddada. Bayesian nonparametric inferences on stochastic ordering. ISDS Discussion Paper, 2, 2007.
-
(2007)
ISDS Discussion Paper
, vol.2
-
-
Dunson, D.1
Peddada, S.2
-
22
-
-
0001120413
-
A Bayesian analysis of some nonparametric problems
-
Thomas Ferguson. A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1(2):209-230, 1973.
-
(1973)
Annals of Statistics
, vol.1
, Issue.2
, pp. 209-230
-
-
Ferguson, T.1
-
24
-
-
77956929686
-
Posterior regular-ization for structured latent variable models
-
Kuzman Ganchev, João. Graca, Jennifer Gillenwater, and Ben Taskar. Posterior regular-ization for structured latent variable models. Journal of Machine Learning Research, (11):2001-2094, 2010.
-
(2010)
Journal of Machine Learning Research
, Issue.11
, pp. 2001-2094
-
-
Ganchev, K.1
Graca, J.2
Gillenwater, J.3
Taskar, B.4
-
25
-
-
20444457583
-
Statistical methods for eliciting probability distributions
-
DOI 10.1198/016214505000000105
-
Paul Garthwaite, Joseph Kadane, and Anthony O'Hagan. Statistical methods for eliciting probability distributions. Journal of the American Statistical Association, 100(470):680-700, 2005. (Pubitemid 40816603)
-
(2005)
Journal of the American Statistical Association
, vol.100
, Issue.470
, pp. 680-700
-
-
Garthwaite, P.H.1
Kadane, J.B.2
O'Hagan, A.3
-
30
-
-
3843074062
-
Bayesian methods for partial stochastic orderings
-
DOI 10.1093/biomet/90.2.303
-
Peter D. Hoff. Bayesian methods for partial stochastic orderings. Biometrika, 90:303-317, 2003. (Pubitemid 39047159)
-
(2003)
Biometrika
, vol.90
, Issue.2
, pp. 303-317
-
-
Hoff, P.D.1
-
35
-
-
79551660140
-
Multitask sparsity via maximum entropy discrimination
-
Tony Jebara. Multitask sparsity via maximum entropy discrimination. Journal of Machine Learning Research, (12):75-110, 2011.
-
(2011)
Journal of Machine Learning Research
, Issue.12
, pp. 75-110
-
-
Jebara, T.1
-
36
-
-
84877739470
-
Monte Carlo methods for maximum margin supervised topic models
-
Qixia Jiang, Jun Zhu, Maosong Sun, and Eric P. Xing. Monte Carlo methods for maximum margin supervised topic models. In Advances in Neural Information Processing Systems, pages 1592-1600, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1592-1600
-
-
Jiang, Q.1
Zhu, J.2
Sun, M.3
Xing, E.P.4
-
37
-
-
1942483137
-
Transductive inference for text classification using support vector machines
-
Thorsten Joachims. Transductive inference for text classification using support vector machines. In International Conference on Machine Learning, 1999.
-
(1999)
International Conference on Machine Learning
-
-
Joachims, T.1
-
38
-
-
0033225865
-
Introduction to variational methods for graphical models
-
DOI 10.1023/A:1007665907178
-
Michael I. Jordan, Zoubin Ghahramani, Tommis Jaakkola, and Lawrence K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37:183-233, 1999. (Pubitemid 30544678)
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
39
-
-
85162389868
-
Variational bounds for mixed-data factor analysis
-
Mohammad E. Khan, Guillaume Bouchard, Benjamin Marlin, and Kevin Murphy. Variational bounds for mixed-data factor analysis. In Advances in Neural Information Processing Systems, pages 1108-1116, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, pp. 1108-1116
-
-
Khan, M.E.1
Bouchard, G.2
Marlin, B.3
Murphy, K.4
-
40
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In International Conference on Machine Learning, pages 282-289, 2001.
-
(2001)
International Conference on Machine Learning
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
43
-
-
0039088691
-
Fenchel and lagrange duality are equivalent
-
Thomas L. Magnanti. Fenchel and Lagrange duality are equivalent. Mathematical Programming, (7):253-258, 1974.
-
(1974)
Mathematical Programming
, Issue.7
, pp. 253-258
-
-
Magnanti, T.L.1
-
44
-
-
77949506891
-
Generalized expectation criteria for semi-supervised learning with weakly labeled data
-
Gideon Mann and Andrew McCallum. Generalized expectation criteria for semi-supervised learning with weakly labeled data. Journal of Machine Learning Research, (11):955-984, 2010.
-
(2010)
Journal of Machine Learning Research
, Issue.11
, pp. 955-984
-
-
Mann, G.1
McCallum, A.2
-
45
-
-
84919825338
-
Robust reg bayes: Selectively incorporating firstorder logic domain knowledge into Bayesian models
-
Shike Mei, Jun Zhu, and Xiaojin Zhu. Robust Reg Bayes: Selectively incorporating firstorder logic domain knowledge into bayesian models. In International Conference on Machine Learning, pages 253-261, 2014.
-
(2014)
International Conference on Machine Learning
, pp. 253-261
-
-
Mei, S.1
Zhu, J.2
Zhu, X.3
-
47
-
-
34547987430
-
Bayesian learning in undirected graphical models: Approximate MCMC algorithms
-
Iain Murray and Zoubin Ghahramani. Bayesian learning in undirected graphical models: Approximate MCMC algorithms. In Uncertainty in Artificial Intelligence, 2004.
-
(2004)
Uncertainty in Artificial Intelligence
-
-
Murray, I.1
Ghahramani, Z.2
-
52
-
-
0001153986
-
Simulation of truncated normal variables
-
Christian P. Robert. Simulation of truncated normal variables. Statistics and Computing, 5(2):121-125, 1995.
-
(1995)
Statistics and Computing
, vol.5
, Issue.2
, pp. 121-125
-
-
Robert, C.P.1
-
54
-
-
84857716089
-
On bregman distances and divergences of probability measures
-
Wolfgang Stummer and Igor Vajda. On bregman distances and divergences of probability measures. IEEE Trans. on Information Theory, 58(3):1277-1288, 2012.
-
(2012)
IEEE Trans. on Information Theory
, vol.58
, Issue.3
, pp. 1277-1288
-
-
Stummer, W.1
Vajda, I.2
-
57
-
-
33749249312
-
Hierarchical dirichlet process
-
Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David Blei. Hierarchical Dirichlet process. Journal of the American Statistical Association, 101(476):1566-1581, 2006.
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.476
, pp. 1566-1581
-
-
Teh, Y.W.1
Jordan, M.I.2
Beal, M.J.3
Blei, D.4
-
60
-
-
65749118363
-
Graphical models, exponential family, and variational methods
-
Martin Wainright and Michael I. Jordan. Graphical models, exponential family, and variational methods. Foundations and Trends in Machine Learning, 1(1):1-305, 2008.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1
, pp. 1-305
-
-
Wainright, M.1
Jordan, M.I.2
-
64
-
-
0000836049
-
Bayesian conditionalisation and the principle of minimum information
-
Peter M. Williams. Bayesian conditionalisation and the principle of minimum information. The British Journal for the Philosophy of Science, 31(2), 1980.
-
(1980)
The British Journal for the Philosophy of Science
, vol.31
, Issue.2
-
-
Williams, P.M.1
-
66
-
-
84877783948
-
Bayesian nonparametric max-margin matrix factorization for collaborative prediction
-
Minjie Xu, Jun Zhu, and Bo Zhang. Bayesian nonparametric max-margin matrix factorization for collaborative prediction. In Advances in Neural Information Processing Systems, pages 64-72, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 64-72
-
-
Xu, M.1
Zhu, J.2
Zhang, B.3
-
68
-
-
80053162594
-
A convex formulation for learning task relationships in multi-task learning
-
Yu Zhang and Dit-Yan Yeung. A convex formulation for learning task relationships in multi-task learning. In Uncertainty in Artificial Intelligence, 2010.
-
(2010)
Uncertainty in Artificial Intelligence
-
-
Zhang, Y.1
Yeung, D.-Y.2
-
69
-
-
84867115033
-
Max-margin nonparametric latent feature relational models for link prediction
-
Jun Zhu. Max-margin nonparametric latent feature relational models for link prediction. In International Conference on Machine Learning, pages 719-726, 2012.
-
(2012)
International Conference on Machine Learning
, pp. 719-726
-
-
Zhu, J.1
-
70
-
-
71149117321
-
MedLDA: Maximum margin supervised topic models for regression and classification
-
Jun Zhu, Amir Ahmed, and Eric P. Xing. MedLDA: Maximum margin supervised topic models for regression and classification. In International Conference on Machine Learning, pages 1257-1264, 2009.
-
(2009)
International Conference on Machine Learning
, pp. 1257-1264
-
-
Zhu, J.1
Ahmed, A.2
Xing, E.P.3
-
71
-
-
84897459309
-
Gibbs max-margin topic models with fast inference algorithms
-
Jun Zhu, Ning Chen, Hugh Perkins, and Bo Zhang. Gibbs max-margin topic models with fast inference algorithms. In International Conference on Machine Learning, pages 124-132, 2013.
-
(2013)
International Conference on Machine Learning
, pp. 124-132
-
-
Zhu, J.1
Chen, N.2
Perkins, H.3
Zhang, B.4
-
73
-
-
80053459183
-
Infinite SVM: A dirichlet process mixture of large-margin kernel machines
-
Jun Zhu, Ning Chen, and Eric P. Xing. Infinite SVM: a Dirichlet process mixture of large-margin kernel machines. In International Conference on Machine Learning, pages 617-624, 2011b.
-
(2011)
International Conference on Machine Learning
, pp. 617-624
-
-
Zhu, J.1
Chen, N.2
Xing, E.P.3
-
74
-
-
73549086344
-
Maximum entropy discrimination Markov networks
-
Jun Zhu and Eric P. Xing. Maximum entropy discrimination Markov networks. Journal of Machine Learning Research, (10):2531-2569, 2009.
-
(2009)
Journal of Machine Learning Research
, Issue.10
, pp. 2531-2569
-
-
Zhu, J.1
Xing, E.P.2
|