메뉴 건너뛰기




Volumn 15, Issue , 2014, Pages 1799-1847

Bayesian inference with posterior regularization and applications to infinite latent SVMs

Author keywords

Bayesian inference; Bayesian nonparametrics; Classification; Large margin learning; Multi task learning; Posterior regularization

Indexed keywords

CLASSIFICATION (OF INFORMATION); INFERENCE ENGINES; MATHEMATICAL OPERATORS; SUPPORT VECTOR MACHINES;

EID: 84902818267     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (154)

References (74)
  • 2
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Rie Kubota Ando and Tong Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, (6):1817-1853, 2005.
    • (2005) Journal of Machine Learning Research , Issue.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 3
    • 0000708831 scopus 로고
    • Mixture of dirichlet process with applications to Bayesian nonpara-metric problems
    • Charles E. Antoniak. Mixture of Dirichlet process with applications to Bayesian nonpara-metric problems. Annals of Statistics, (273):1152-1174, 1974.
    • (1974) Annals of Statistics , Issue.273 , pp. 1152-1174
    • Antoniak, C.E.1
  • 5
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • Bart Bakker and Tom Heskes. Task clustering and gating for Bayesian multitask learning. Journal of Machine Learning Research, (4):83-99, 2003.
    • (2003) Journal of Machine Learning Research , Issue.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 6
    • 0033438067 scopus 로고    scopus 로고
    • The consistency of posterior distributions in nonparametric problems
    • Andrew Barron, Mark Schervish, and Larry Wasserman. The consistency of posterior distributions in nonparametric problems. The Annals of Statistics, 27(2):536-561, 1999.
    • (1999) The Annals of Statistics , vol.27 , Issue.2 , pp. 536-561
    • Barron, A.1    Schervish, M.2    Wasserman, L.3
  • 20
    • 34250663051 scopus 로고    scopus 로고
    • Maximum entropy density estimation with generalized regularization and an application to species distribution modeling
    • Mirosla Dudík, Steven J. Phillips, and Robert E. Schapire. Maximum entropy density estimation with generalized regularization and an application to species distribution modeling. Journal of Machine Learning Research, (8):1217-1260, 2007. (Pubitemid 46945617)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1217-1260
    • Dudik, M.1    Phillips, S.J.2    Schapire, R.E.3
  • 21
    • 84860603459 scopus 로고    scopus 로고
    • Bayesian nonparametric inferences on stochastic ordering
    • David Dunson and Shyamal Peddada. Bayesian nonparametric inferences on stochastic ordering. ISDS Discussion Paper, 2, 2007.
    • (2007) ISDS Discussion Paper , vol.2
    • Dunson, D.1    Peddada, S.2
  • 22
    • 0001120413 scopus 로고
    • A Bayesian analysis of some nonparametric problems
    • Thomas Ferguson. A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1(2):209-230, 1973.
    • (1973) Annals of Statistics , vol.1 , Issue.2 , pp. 209-230
    • Ferguson, T.1
  • 25
    • 20444457583 scopus 로고    scopus 로고
    • Statistical methods for eliciting probability distributions
    • DOI 10.1198/016214505000000105
    • Paul Garthwaite, Joseph Kadane, and Anthony O'Hagan. Statistical methods for eliciting probability distributions. Journal of the American Statistical Association, 100(470):680-700, 2005. (Pubitemid 40816603)
    • (2005) Journal of the American Statistical Association , vol.100 , Issue.470 , pp. 680-700
    • Garthwaite, P.H.1    Kadane, J.B.2    O'Hagan, A.3
  • 30
    • 3843074062 scopus 로고    scopus 로고
    • Bayesian methods for partial stochastic orderings
    • DOI 10.1093/biomet/90.2.303
    • Peter D. Hoff. Bayesian methods for partial stochastic orderings. Biometrika, 90:303-317, 2003. (Pubitemid 39047159)
    • (2003) Biometrika , vol.90 , Issue.2 , pp. 303-317
    • Hoff, P.D.1
  • 35
    • 79551660140 scopus 로고    scopus 로고
    • Multitask sparsity via maximum entropy discrimination
    • Tony Jebara. Multitask sparsity via maximum entropy discrimination. Journal of Machine Learning Research, (12):75-110, 2011.
    • (2011) Journal of Machine Learning Research , Issue.12 , pp. 75-110
    • Jebara, T.1
  • 37
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Thorsten Joachims. Transductive inference for text classification using support vector machines. In International Conference on Machine Learning, 1999.
    • (1999) International Conference on Machine Learning
    • Joachims, T.1
  • 38
    • 0033225865 scopus 로고    scopus 로고
    • Introduction to variational methods for graphical models
    • DOI 10.1023/A:1007665907178
    • Michael I. Jordan, Zoubin Ghahramani, Tommis Jaakkola, and Lawrence K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37:183-233, 1999. (Pubitemid 30544678)
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 40
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In International Conference on Machine Learning, pages 282-289, 2001.
    • (2001) International Conference on Machine Learning , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 43
    • 0039088691 scopus 로고
    • Fenchel and lagrange duality are equivalent
    • Thomas L. Magnanti. Fenchel and Lagrange duality are equivalent. Mathematical Programming, (7):253-258, 1974.
    • (1974) Mathematical Programming , Issue.7 , pp. 253-258
    • Magnanti, T.L.1
  • 44
    • 77949506891 scopus 로고    scopus 로고
    • Generalized expectation criteria for semi-supervised learning with weakly labeled data
    • Gideon Mann and Andrew McCallum. Generalized expectation criteria for semi-supervised learning with weakly labeled data. Journal of Machine Learning Research, (11):955-984, 2010.
    • (2010) Journal of Machine Learning Research , Issue.11 , pp. 955-984
    • Mann, G.1    McCallum, A.2
  • 45
    • 84919825338 scopus 로고    scopus 로고
    • Robust reg bayes: Selectively incorporating firstorder logic domain knowledge into Bayesian models
    • Shike Mei, Jun Zhu, and Xiaojin Zhu. Robust Reg Bayes: Selectively incorporating firstorder logic domain knowledge into bayesian models. In International Conference on Machine Learning, pages 253-261, 2014.
    • (2014) International Conference on Machine Learning , pp. 253-261
    • Mei, S.1    Zhu, J.2    Zhu, X.3
  • 47
    • 34547987430 scopus 로고    scopus 로고
    • Bayesian learning in undirected graphical models: Approximate MCMC algorithms
    • Iain Murray and Zoubin Ghahramani. Bayesian learning in undirected graphical models: Approximate MCMC algorithms. In Uncertainty in Artificial Intelligence, 2004.
    • (2004) Uncertainty in Artificial Intelligence
    • Murray, I.1    Ghahramani, Z.2
  • 52
    • 0001153986 scopus 로고
    • Simulation of truncated normal variables
    • Christian P. Robert. Simulation of truncated normal variables. Statistics and Computing, 5(2):121-125, 1995.
    • (1995) Statistics and Computing , vol.5 , Issue.2 , pp. 121-125
    • Robert, C.P.1
  • 54
    • 84857716089 scopus 로고    scopus 로고
    • On bregman distances and divergences of probability measures
    • Wolfgang Stummer and Igor Vajda. On bregman distances and divergences of probability measures. IEEE Trans. on Information Theory, 58(3):1277-1288, 2012.
    • (2012) IEEE Trans. on Information Theory , vol.58 , Issue.3 , pp. 1277-1288
    • Stummer, W.1    Vajda, I.2
  • 60
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential family, and variational methods
    • Martin Wainright and Michael I. Jordan. Graphical models, exponential family, and variational methods. Foundations and Trends in Machine Learning, 1(1):1-305, 2008.
    • (2008) Foundations and Trends in Machine Learning , vol.1 , Issue.1 , pp. 1-305
    • Wainright, M.1    Jordan, M.I.2
  • 64
    • 0000836049 scopus 로고
    • Bayesian conditionalisation and the principle of minimum information
    • Peter M. Williams. Bayesian conditionalisation and the principle of minimum information. The British Journal for the Philosophy of Science, 31(2), 1980.
    • (1980) The British Journal for the Philosophy of Science , vol.31 , Issue.2
    • Williams, P.M.1
  • 66
    • 84877783948 scopus 로고    scopus 로고
    • Bayesian nonparametric max-margin matrix factorization for collaborative prediction
    • Minjie Xu, Jun Zhu, and Bo Zhang. Bayesian nonparametric max-margin matrix factorization for collaborative prediction. In Advances in Neural Information Processing Systems, pages 64-72, 2012.
    • (2012) Advances in Neural Information Processing Systems , pp. 64-72
    • Xu, M.1    Zhu, J.2    Zhang, B.3
  • 67
    • 34547974802 scopus 로고    scopus 로고
    • The matrix stick-breaking process for flexible multi-task learning
    • Ya Xue, David Dunson, and Lawrence Carin. The matrix stick-breaking process for flexible multi-task learning. In International Conference on Machine Learning, pages 1063-1070, 2007.
    • (2007) International Conference on Machine Learning , pp. 1063-1070
    • Xue, Y.1    Dunson, D.2    Carin, L.3
  • 68
    • 80053162594 scopus 로고    scopus 로고
    • A convex formulation for learning task relationships in multi-task learning
    • Yu Zhang and Dit-Yan Yeung. A convex formulation for learning task relationships in multi-task learning. In Uncertainty in Artificial Intelligence, 2010.
    • (2010) Uncertainty in Artificial Intelligence
    • Zhang, Y.1    Yeung, D.-Y.2
  • 69
    • 84867115033 scopus 로고    scopus 로고
    • Max-margin nonparametric latent feature relational models for link prediction
    • Jun Zhu. Max-margin nonparametric latent feature relational models for link prediction. In International Conference on Machine Learning, pages 719-726, 2012.
    • (2012) International Conference on Machine Learning , pp. 719-726
    • Zhu, J.1
  • 70
    • 71149117321 scopus 로고    scopus 로고
    • MedLDA: Maximum margin supervised topic models for regression and classification
    • Jun Zhu, Amir Ahmed, and Eric P. Xing. MedLDA: Maximum margin supervised topic models for regression and classification. In International Conference on Machine Learning, pages 1257-1264, 2009.
    • (2009) International Conference on Machine Learning , pp. 1257-1264
    • Zhu, J.1    Ahmed, A.2    Xing, E.P.3
  • 73
    • 80053459183 scopus 로고    scopus 로고
    • Infinite SVM: A dirichlet process mixture of large-margin kernel machines
    • Jun Zhu, Ning Chen, and Eric P. Xing. Infinite SVM: a Dirichlet process mixture of large-margin kernel machines. In International Conference on Machine Learning, pages 617-624, 2011b.
    • (2011) International Conference on Machine Learning , pp. 617-624
    • Zhu, J.1    Chen, N.2    Xing, E.P.3
  • 74
    • 73549086344 scopus 로고    scopus 로고
    • Maximum entropy discrimination Markov networks
    • Jun Zhu and Eric P. Xing. Maximum entropy discrimination Markov networks. Journal of Machine Learning Research, (10):2531-2569, 2009.
    • (2009) Journal of Machine Learning Research , Issue.10 , pp. 2531-2569
    • Zhu, J.1    Xing, E.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.