메뉴 건너뛰기




Volumn 10, Issue , 2009, Pages 2531-2569

Maximum entropy discrimination markov networks

Author keywords

Entropie regularization; Graphical models; L1 regularization; Maximum entropy discrimination; Maximum margin markov network; Structured input output model

Indexed keywords

GRAPHICAL MODEL; INPUT/OUTPUT; MARKOV NETWORKS; MAXIMUM ENTROPY; MAXIMUM MARGIN; MAXIMUM MARGIN MARKOV NETWORK;

EID: 73549086344     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (52)

References (50)
  • 6
    • 0026860799 scopus 로고
    • Robust linear programming discrimination of two linearly inseparable sets
    • Kristin P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly inseparable sets. Optim. Methods Softw, (1):23-34, 1992.
    • (1992) Optim. Methods Softw , vol.1 , pp. 23-34
    • Bennett, K.P.1    Mangasarian, O.L.2
  • 12
    • 34250663051 scopus 로고    scopus 로고
    • Schapire. Maximum entropy density estimation with generalized regularization and an application to species distribution modeling
    • Mirosla Dudfk, Steven J. Phillips, and Robert E. Schapire. Maximum entropy density estimation with generalized regularization and an application to species distribution modeling. Journal of Machine Learning Research, (8):1217-1260, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1217-1260
    • Dudfk, M.1    Phillips, S.J.2    Robert, E.3
  • 20
    • 34248137881 scopus 로고    scopus 로고
    • On Bayesian classification with laplace priors
    • Ata Kaban. On Bayesian classification with laplace priors. Pattern Recognition Letters, 28(10): 1271-1282, 2007.
    • (2007) Pattern Recognition Letters , vol.28 , Issue.10 , pp. 1271-1282
    • Kaban, A.1
  • 26
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization. Mathematical Programming, (45):503-528, 1989.
    • (1989) Mathematical Programming , vol.45 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 27
    • 50149118484 scopus 로고    scopus 로고
    • Generalization bounds and consistency for structured labeling
    • Edited by G. Bakir, T. Hofmann, B. Scholkopf, A. Smola, B. Taskar, and S. V. N. Vishwanathan. MIT Press
    • David McAllester. Generalization bounds and consistency for structured labeling. In Predicting Structured Data, edited by G. Bakir, T. Hofmann, B. Scholkopf, A. Smola, B. Taskar, and S. V. N. Vishwanathan. MIT Press, 2007.
    • (2007) Predicting Structured Data
    • McAllester, D.1
  • 31
    • 0024610919 scopus 로고
    • Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition
    • Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, (77(2)):257-286,1989.
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Lawrence, R.1
  • 33
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651-1686, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Robert, E.1    Schapire, Y.F.2    Bartlett, P.3    Lee, W.S.4
  • 34
    • 0036163572 scopus 로고    scopus 로고
    • Bayesian methods for support vector machines: Evidence and predictive class probabilities
    • Peter Sollich. Bayesian methods for support vector machines: Evidence and predictive class probabilities. Journal of Machine Learning Research, (3):21-52, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 21-52
    • Sollich, P.1
  • 38
    • 0001224048 scopus 로고    scopus 로고
    • Tipping. Sparse bayesian learning and the relevance vector machine
    • Michael E. Tipping. Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, (1):211-244, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Michael, E.1
  • 46
    • 48849087800 scopus 로고    scopus 로고
    • Dynamic hierarchical Markov random fields for integrated web data extraction
    • Jun Zhu, Zaiqing Nie, Bo Zhang, and Ji-Rong Wen. Dynamic hierarchical Markov random fields for integrated web data extraction. Journal of Machine Learning Research, (9): 1583-1614, 2008a.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1583-1614
    • Zhu, J.1    Nie, Z.2    Zhang, B.3    Wen, J.-R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.