-
3
-
-
0002629270
-
Maximum likelihood estimation from incomplete data via the EM algorithm
-
Dempster, A.P., Laird, N.M., and Rubin, D.B. Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Ser. B, (39): 1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society, Ser. B
, Issue.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
5
-
-
71149105482
-
PAC-Bayesian learning of linear classifiers
-
Germain, P., Lacasse, A., Laviolette, F., and Marchand, M. PAC-Bayesian learning of linear classifiers. In International Conference on Machine Learning (ICML), pp. 353-360, 2009.
-
(2009)
International Conference on Machine Learning (ICML)
, pp. 353-360
-
-
Germain, P.1
Lacasse, A.2
Laviolette, F.3
Marchand, M.4
-
7
-
-
84877739470
-
Monte Carlo methods for maximum margin supervised topic models
-
Jiang, Q., Zhu, J., Sun, M., and Xing, E.P. Monte Carlo methods for maximum margin supervised topic models. In Advances in Neural Information Processing Systems (NIPS), 2012.
-
(2012)
Advances in Neural Information Processing Systems (NIPS)
-
-
Jiang, Q.1
Zhu, J.2
Sun, M.3
Xing, E.P.4
-
9
-
-
79957489009
-
DiscLDA: Discriminative learning for dimensionality reduction and classification
-
Lacoste-Jullien, S., Sha, F., and Jordan, M.I. DiscLDA: Discriminative learning for dimensionality reduction and classification. Advances in Neural Information Processing Systems (NIPS), pp. 897-904, 2009.
-
(2009)
Advances in Neural Information Processing Systems (NIPS)
, pp. 897-904
-
-
Lacoste-Jullien, S.1
Sha, F.2
Jordan, M.I.3
-
10
-
-
0037399538
-
PAC-Bayesian stochastic model selection
-
McAllester, D. PAC-Bayesian stochastic model selection. Machine Learning, 51:5-21, 2003.
-
(2003)
Machine Learning
, vol.51
, pp. 5-21
-
-
McAllester, D.1
-
11
-
-
84952221231
-
Generating random variates using transformations with multiple roots
-
Michael, J.R., Schucany, W.R., and Haas, R.W. Generating random variates using transformations with multiple roots. The American Statistician, 30(2): 88-90, 1976.
-
(1976)
The American Statistician
, vol.30
, Issue.2
, pp. 88-90
-
-
Michael, J.R.1
Schucany, W.R.2
Haas, R.W.3
-
12
-
-
70349433731
-
Distributed algorithms for topic models
-
Newman, D., Asuncion, A., Smyth, P., and Welling, M. Distributed algorithms for topic models. Journal of Machine Learning Research (JMLR), (10):1801-1828, 2009.
-
(2009)
Journal of Machine Learning Research (JMLR)
, Issue.10
, pp. 1801-1828
-
-
Newman, D.1
Asuncion, A.2
Smyth, P.3
Welling, M.4
-
13
-
-
79957844365
-
Data augmentation for support vector machines
-
Poison, N.G. and Scott, S.L. Data augmentation for support vector machines. Bayesian Analysis, 6(1): 1-24, 2011.
-
(2011)
Bayesian Analysis
, vol.6
, Issue.1
, pp. 1-24
-
-
Poison, N.G.1
Scott, S.L.2
-
15
-
-
80052119994
-
An architecture for parallel topic models
-
Smola, A. and Narayanamurthy, S. An architecture for parallel topic models. Very Large Data Base (VLDB), 3(1-2):703-710, 2010.
-
(2010)
Very Large Data Base (VLDB)
, vol.3
, Issue.1-2
, pp. 703-710
-
-
Smola, A.1
Narayanamurthy, S.2
-
16
-
-
4043137356
-
A tutorial on support vector regression
-
Smola, A. and Scholkopf, B. A tutorial on support vector regression. Statistics and Computing, 14(3):-199-222, 2003.
-
(2003)
Statistics and Computing
, vol.14
, Issue.3
, pp. 199-222
-
-
Smola, A.1
Scholkopf, B.2
-
21
-
-
71149117321
-
MedLDA: Maximum margin supervised topic models for regression and classification
-
Zhu, J., Ahmed, A., and Xing, E.P. MedLDA: maximum margin supervised topic models for regression and classification. In International Conference on Machine Learning (ICML), pp. 1257-1264, 2009.
-
(2009)
International Conference on Machine Learning (ICML)
, pp. 1257-1264
-
-
Zhu, J.1
Ahmed, A.2
Xing, E.P.3
-
22
-
-
85162332966
-
Infinite latent SVM for classification and multi-task learning
-
Zhu, J., Chen, N., and Xing, E.P. Infinite latent SVM for classification and multi-task learning. In Advances in Neural Information Processing Systems (NIPS)pp. 1620-1628, 2011.
-
(2011)
Advances in Neural Information Processing Systems (NIPS)
, pp. 1620-1628
-
-
Zhu, J.1
Chen, N.2
Xing, E.P.3
-
23
-
-
84869186087
-
MedLDA: Maximum margin supervised topic models
-
Zhu, J., Ahmed, A., and Xing, E.P. MedLDA: maximum margin supervised topic models. Journal of Machine Learning Research (JMLR), (13):2237-2278, 2012.
-
(2012)
Journal of Machine Learning Research (JMLR)
, Issue.13
, pp. 2237-2278
-
-
Zhu, J.1
Ahmed, A.2
Xing, E.P.3
|