메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Infinite latent SVM for classification and multi-task learning

Author keywords

[No Author keywords available]

Indexed keywords

INFERENCE ENGINES; SUPPORT VECTOR MACHINES;

EID: 85162332966     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (53)

References (32)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. JMLR, (6):1817-1853, 2005.
    • (2005) JMLR , Issue.6 , pp. 1817-1853
    • Ando, R.1    Zhang, T.2
  • 2
    • 0000708831 scopus 로고
    • Mixture of Dirichlet process with applications to Bayesian nonparametric problems
    • C.E. Antoniak. Mixture of Dirichlet process with applications to Bayesian nonparametric problems. Annals of Stats, (273):1152-1174, 1974.
    • (1974) Annals of Stats , Issue.273 , pp. 1152-1174
    • Antoniak, C.E.1
  • 4
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • B. Bakker and T. Heskes. Task clustering and gating for Bayesian multitask learning. JMLR, (4):83-99, 2003.
    • (2003) JMLR , Issue.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 6
    • 80053165082 scopus 로고    scopus 로고
    • Alternating projections for learning with expectation constraints
    • K. Bellare, G. Druck, and A. McCallum. Alternating projections for learning with expectation constraints. In UAI, 2009.
    • (2009) UAI
    • Bellare, K.1    Druck, G.2    McCallum, A.3
  • 7
  • 8
    • 85161973444 scopus 로고    scopus 로고
    • Predictive subspace learning for multiview data: A large margin approach
    • N. Chen, J. Zhu, and E.P. Xing. Predictive subspace learning for multiview data: a large margin approach. In NIPS, 2010.
    • (2010) NIPS
    • Chen, N.1    Zhu, J.2    Xing, E.P.3
  • 10
    • 84860603459 scopus 로고    scopus 로고
    • Bayesian nonparametric inferences on stochastic ordering
    • D. Dunson and S. Peddada. Bayesian nonparametric inferences on stochastic ordering. ISDS Discussion Paper, 2, 2007.
    • (2007) ISDS Discussion Paper , vol.2
    • Dunson, D.1    Peddada, S.2
  • 11
    • 77956929686 scopus 로고    scopus 로고
    • Posterior regularization for structured latent variable models
    • K. Ganchev, J. Graca, J. Gillenwater, and B. Taskar. Posterior regularization for structured latent variable models. JMLR, (11):2001-2094, 2010.
    • (2010) JMLR , Issue.11 , pp. 2001-2094
    • Ganchev, K.1    Graca, J.2    Gillenwater, J.3    Taskar, B.4
  • 12
    • 34548625798 scopus 로고    scopus 로고
    • Infinite latent feature models and the Indian buffet process
    • T.L. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In NIPS, 2006.
    • (2006) NIPS
    • Griffiths, T.L.1    Ghahramani, Z.2
  • 13
    • 3843074062 scopus 로고    scopus 로고
    • Bayesian methods for partial stochastic orderings
    • D. Hoff. Bayesian methods for partial stochastic orderings. Biometrika, 90:303-317, 2003.
    • (2003) Biometrika , vol.90 , pp. 303-317
    • Hoff, D.1
  • 14
    • 77956221584 scopus 로고    scopus 로고
    • Discriminative topic modeling based on manifold learning
    • S. Huh and S. Fienberg. Discriminative topic modeling based on manifold learning. In KDD, 2010.
    • (2010) KDD
    • Huh, S.1    Fienberg, S.2
  • 16
    • 79551660140 scopus 로고    scopus 로고
    • Multitask sparsity via maximum entropy discrimination
    • T. Jebara. Multitask sparsity via maximum entropy discrimination. JMLR, (12):75-110, 2011.
    • (2011) JMLR , Issue.12 , pp. 75-110
    • Jebara, T.1
  • 17
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims. Transductive inference for text classification using support vector machines. In ICML, 1999.
    • (1999) ICML
    • Joachims, T.1
  • 18
    • 85162389868 scopus 로고    scopus 로고
    • Variational bounds for mixed-data factor analysis
    • M. E. Khan, B. Marlin, G. Bouchard, and K. Murphy. Variational bounds for mixed-data factor analysis. In NIPS, 2010.
    • (2010) NIPS
    • Khan, M.E.1    Marlin, B.2    Bouchard, G.3    Murphy, K.4
  • 19
    • 71149098112 scopus 로고    scopus 로고
    • Learning from measurements in exponential families
    • P. Liang, M. Jordan, and D. Klein. Learning from measurements in exponential families. In ICML, 2009.
    • (2009) ICML
    • Liang, P.1    Jordan, M.2    Klein, D.3
  • 21
    • 77949506891 scopus 로고    scopus 로고
    • Generalized expectation criteria for semi-supervised learning with weakly labeled data
    • G. Mann and A. McCallum. Generalized expectation criteria for semi-supervised learning with weakly labeled data. JMLR, (11):955-984, 2010.
    • (2010) JMLR , Issue.11 , pp. 955-984
    • Mann, G.1    McCallum, A.2
  • 22
    • 79951739147 scopus 로고    scopus 로고
    • Nonparametric latent feature models for link prediction
    • K. Miller, T. Griffiths, and M. Jordan. Nonparametric latent feature models for link prediction. In NIPS, 2009.
    • (2009) NIPS
    • Miller, K.1    Griffiths, T.2    Jordan, M.3
  • 23
    • 84860644747 scopus 로고    scopus 로고
    • Infinite predictor subspace models for multitask learning
    • P. Rai and H. Daume III. Infinite predictor subspace models for multitask learning. In AISTATS, 2010.
    • (2010) AISTATS
    • Rai, P.1    Daume III, H.2
  • 24
    • 84896062664 scopus 로고    scopus 로고
    • Infinite mixtures of Gaussian process experts
    • C.E. Rasmussen and Z. Ghahramani. Infinite mixtures of Gaussian process experts. In NIPS, 2002.
    • (2002) NIPS
    • Rasmussen, C.E.1    Ghahramani, Z.2
  • 25
    • 70049094991 scopus 로고    scopus 로고
    • Stick-breaking construction of the Indian buffet process
    • Y.W. Teh, D. Gorur, and Z. Ghahramani. Stick-breaking construction of the Indian buffet process. In AISTATS, 2007.
    • (2007) AISTATS
    • Teh, Y.W.1    Gorur, D.2    Ghahramani, Z.3
  • 26
    • 33749249312 scopus 로고    scopus 로고
    • Hierarchical Dirichlet process
    • Y.W. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical Dirichlet process. JASA, 101(476):1566-1581, 2006.
    • (2006) JASA , vol.101 , Issue.476 , pp. 1566-1581
    • Teh, Y.W.1    Jordan, M.2    Beal, M.3    Blei, D.4
  • 27
    • 33745780732 scopus 로고    scopus 로고
    • Exponential family harmoniums with an application to information retrieval
    • M. Welling, M. Rosen-Zvi, and G. Hinton. Exponential family harmoniums with an application to information retrieval. In NIPS, 2004.
    • (2004) NIPS
    • Welling, M.1    Rosen-Zvi, M.2    Hinton, G.3
  • 28
    • 74549187416 scopus 로고    scopus 로고
    • The matrix stick-breaking process for flexible multi-task learning
    • Y. Xue, D. Dunson, and L. Carin. The matrix stick-breaking process for flexible multi-task learning. In ICML, 2007.
    • (2007) ICML
    • Xue, Y.1    Dunson, D.2    Carin, L.3
  • 29
    • 84952524259 scopus 로고
    • Optimal information processing and Bayes' theorem
    • A. Zellner. Optimal information processing and Bayes' theorem. American Statistician, 42:278-280, 1988.
    • (1988) American Statistician , vol.42 , pp. 278-280
    • Zellner, A.1
  • 30
    • 80053162594 scopus 로고    scopus 로고
    • A convex formulation for learning task relationships in multi-task learning
    • Y. Zhang and D.Y. Yeung. A convex formulation for learning task relationships in multi-task learning. In UAI, 2010.
    • (2010) UAI
    • Zhang, Y.1    Yeung, D.Y.2
  • 31
    • 71149117321 scopus 로고    scopus 로고
    • MedLDA: Maximum margin supervised topic models for regression and classification
    • J. Zhu, A. Ahmed, and E.P. Xing. MedLDA: Maximum margin supervised topic models for regression and classification. In ICML, 2009.
    • (2009) ICML
    • Zhu, J.1    Ahmed, A.2    Xing, E.P.3
  • 32
    • 80053459183 scopus 로고    scopus 로고
    • Infinite SVM: A Dirichlet process mixture of large-margin kernel machines
    • J. Zhu, N. Chen, and E.P. Xing. Infinite SVM: a Dirichlet process mixture of large-margin kernel machines. In ICML, 2011.
    • (2011) ICML
    • Zhu, J.1    Chen, N.2    Xing, E.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.