-
1
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
R. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. JMLR, (6):1817-1853, 2005.
-
(2005)
JMLR
, Issue.6
, pp. 1817-1853
-
-
Ando, R.1
Zhang, T.2
-
2
-
-
0000708831
-
Mixture of Dirichlet process with applications to Bayesian nonparametric problems
-
C.E. Antoniak. Mixture of Dirichlet process with applications to Bayesian nonparametric problems. Annals of Stats, (273):1152-1174, 1974.
-
(1974)
Annals of Stats
, Issue.273
, pp. 1152-1174
-
-
Antoniak, C.E.1
-
4
-
-
0346238931
-
Task clustering and gating for Bayesian multitask learning
-
B. Bakker and T. Heskes. Task clustering and gating for Bayesian multitask learning. JMLR, (4):83-99, 2003.
-
(2003)
JMLR
, Issue.4
, pp. 83-99
-
-
Bakker, B.1
Heskes, T.2
-
6
-
-
80053165082
-
Alternating projections for learning with expectation constraints
-
K. Bellare, G. Druck, and A. McCallum. Alternating projections for learning with expectation constraints. In UAI, 2009.
-
(2009)
UAI
-
-
Bellare, K.1
Druck, G.2
McCallum, A.3
-
8
-
-
85161973444
-
Predictive subspace learning for multiview data: A large margin approach
-
N. Chen, J. Zhu, and E.P. Xing. Predictive subspace learning for multiview data: a large margin approach. In NIPS, 2010.
-
(2010)
NIPS
-
-
Chen, N.1
Zhu, J.2
Xing, E.P.3
-
10
-
-
84860603459
-
Bayesian nonparametric inferences on stochastic ordering
-
D. Dunson and S. Peddada. Bayesian nonparametric inferences on stochastic ordering. ISDS Discussion Paper, 2, 2007.
-
(2007)
ISDS Discussion Paper
, vol.2
-
-
Dunson, D.1
Peddada, S.2
-
11
-
-
77956929686
-
Posterior regularization for structured latent variable models
-
K. Ganchev, J. Graca, J. Gillenwater, and B. Taskar. Posterior regularization for structured latent variable models. JMLR, (11):2001-2094, 2010.
-
(2010)
JMLR
, Issue.11
, pp. 2001-2094
-
-
Ganchev, K.1
Graca, J.2
Gillenwater, J.3
Taskar, B.4
-
12
-
-
34548625798
-
Infinite latent feature models and the Indian buffet process
-
T.L. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In NIPS, 2006.
-
(2006)
NIPS
-
-
Griffiths, T.L.1
Ghahramani, Z.2
-
13
-
-
3843074062
-
Bayesian methods for partial stochastic orderings
-
D. Hoff. Bayesian methods for partial stochastic orderings. Biometrika, 90:303-317, 2003.
-
(2003)
Biometrika
, vol.90
, pp. 303-317
-
-
Hoff, D.1
-
14
-
-
77956221584
-
Discriminative topic modeling based on manifold learning
-
S. Huh and S. Fienberg. Discriminative topic modeling based on manifold learning. In KDD, 2010.
-
(2010)
KDD
-
-
Huh, S.1
Fienberg, S.2
-
16
-
-
79551660140
-
Multitask sparsity via maximum entropy discrimination
-
T. Jebara. Multitask sparsity via maximum entropy discrimination. JMLR, (12):75-110, 2011.
-
(2011)
JMLR
, Issue.12
, pp. 75-110
-
-
Jebara, T.1
-
17
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
T. Joachims. Transductive inference for text classification using support vector machines. In ICML, 1999.
-
(1999)
ICML
-
-
Joachims, T.1
-
19
-
-
71149098112
-
Learning from measurements in exponential families
-
P. Liang, M. Jordan, and D. Klein. Learning from measurements in exponential families. In ICML, 2009.
-
(2009)
ICML
-
-
Liang, P.1
Jordan, M.2
Klein, D.3
-
21
-
-
77949506891
-
Generalized expectation criteria for semi-supervised learning with weakly labeled data
-
G. Mann and A. McCallum. Generalized expectation criteria for semi-supervised learning with weakly labeled data. JMLR, (11):955-984, 2010.
-
(2010)
JMLR
, Issue.11
, pp. 955-984
-
-
Mann, G.1
McCallum, A.2
-
22
-
-
79951739147
-
Nonparametric latent feature models for link prediction
-
K. Miller, T. Griffiths, and M. Jordan. Nonparametric latent feature models for link prediction. In NIPS, 2009.
-
(2009)
NIPS
-
-
Miller, K.1
Griffiths, T.2
Jordan, M.3
-
23
-
-
84860644747
-
Infinite predictor subspace models for multitask learning
-
P. Rai and H. Daume III. Infinite predictor subspace models for multitask learning. In AISTATS, 2010.
-
(2010)
AISTATS
-
-
Rai, P.1
Daume III, H.2
-
24
-
-
84896062664
-
Infinite mixtures of Gaussian process experts
-
C.E. Rasmussen and Z. Ghahramani. Infinite mixtures of Gaussian process experts. In NIPS, 2002.
-
(2002)
NIPS
-
-
Rasmussen, C.E.1
Ghahramani, Z.2
-
25
-
-
70049094991
-
Stick-breaking construction of the Indian buffet process
-
Y.W. Teh, D. Gorur, and Z. Ghahramani. Stick-breaking construction of the Indian buffet process. In AISTATS, 2007.
-
(2007)
AISTATS
-
-
Teh, Y.W.1
Gorur, D.2
Ghahramani, Z.3
-
26
-
-
33749249312
-
Hierarchical Dirichlet process
-
Y.W. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical Dirichlet process. JASA, 101(476):1566-1581, 2006.
-
(2006)
JASA
, vol.101
, Issue.476
, pp. 1566-1581
-
-
Teh, Y.W.1
Jordan, M.2
Beal, M.3
Blei, D.4
-
27
-
-
33745780732
-
Exponential family harmoniums with an application to information retrieval
-
M. Welling, M. Rosen-Zvi, and G. Hinton. Exponential family harmoniums with an application to information retrieval. In NIPS, 2004.
-
(2004)
NIPS
-
-
Welling, M.1
Rosen-Zvi, M.2
Hinton, G.3
-
28
-
-
74549187416
-
The matrix stick-breaking process for flexible multi-task learning
-
Y. Xue, D. Dunson, and L. Carin. The matrix stick-breaking process for flexible multi-task learning. In ICML, 2007.
-
(2007)
ICML
-
-
Xue, Y.1
Dunson, D.2
Carin, L.3
-
29
-
-
84952524259
-
Optimal information processing and Bayes' theorem
-
A. Zellner. Optimal information processing and Bayes' theorem. American Statistician, 42:278-280, 1988.
-
(1988)
American Statistician
, vol.42
, pp. 278-280
-
-
Zellner, A.1
-
30
-
-
80053162594
-
A convex formulation for learning task relationships in multi-task learning
-
Y. Zhang and D.Y. Yeung. A convex formulation for learning task relationships in multi-task learning. In UAI, 2010.
-
(2010)
UAI
-
-
Zhang, Y.1
Yeung, D.Y.2
-
31
-
-
71149117321
-
MedLDA: Maximum margin supervised topic models for regression and classification
-
J. Zhu, A. Ahmed, and E.P. Xing. MedLDA: Maximum margin supervised topic models for regression and classification. In ICML, 2009.
-
(2009)
ICML
-
-
Zhu, J.1
Ahmed, A.2
Xing, E.P.3
-
32
-
-
80053459183
-
Infinite SVM: A Dirichlet process mixture of large-margin kernel machines
-
J. Zhu, N. Chen, and E.P. Xing. Infinite SVM: a Dirichlet process mixture of large-margin kernel machines. In ICML, 2011.
-
(2011)
ICML
-
-
Zhu, J.1
Chen, N.2
Xing, E.P.3
|