메뉴 건너뛰기




Volumn 24, Issue 3, 2011, Pages 534-542

Prediction intervals to account for uncertainties in neural network predictions: Methodology and application in bus travel time prediction

Author keywords

Bus travel time; Neural network; Prediction intervals; Prediction uncertainty

Indexed keywords

BUS ROUTE; CONFIDENCE INTERVAL; IN-FIELD; MELBOURNE , AUSTRALIA; NETWORK PREDICTION; PREDICTION INTERVAL; PREDICTION UNCERTAINTY; TRAINING DATA; TRANSPORTATION ENGINEERING; TRAVEL TIME; TRAVEL TIME PREDICTION; TWO SOURCES;

EID: 79951949165     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2010.11.004     Document Type: Article
Times cited : (116)

References (46)
  • 4
    • 57449100830 scopus 로고    scopus 로고
    • Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach
    • M. Cai, Y. Yin, and M. Xie Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach Transportation Research Part D 14 1 2009 32 41
    • (2009) Transportation Research Part D , vol.14 , Issue.1 , pp. 32-41
    • Cai, M.1    Yin, Y.2    Xie, M.3
  • 5
    • 34548780987 scopus 로고    scopus 로고
    • Using automatic passenger counter data in bus arrival time prediction
    • M. Chen, J. Yaw, S.I. Chien, and X. Liu Using automatic passenger counter data in bus arrival time prediction Journal of Advanced Transportation 41 3 2007 267 283 (Pubitemid 47437158)
    • (2007) Journal of Advanced Transportation , vol.41 , Issue.3 , pp. 267-283
    • Chen, M.1    Yaw, J.2    Chien, S.I.3    Liu, X.4
  • 6
    • 0028748361 scopus 로고
    • Using neural networks to synthesize origin-destination flows in a traffic circle
    • S. Chien, H. Hwang, and T. Pei Using neural networks to synthesize origin-destination flows in a traffic circle Transportation Research Record 1457 1994 134 142
    • (1994) Transportation Research Record , vol.1457 , pp. 134-142
    • Chien, S.1    Hwang, H.2    Pei, T.3
  • 7
    • 0347526141 scopus 로고    scopus 로고
    • Neural network model for rapid forecasting of freeway link travel time
    • A. Dharia, and H. Adeli Neural network model for rapid forecasting of freeway link travel time Engineering Applications of Artificial Intelligence 16 78 2003 607 613
    • (2003) Engineering Applications of Artificial Intelligence , vol.16 , Issue.78 , pp. 607-613
    • Dharia, A.1    Adeli, H.2
  • 8
    • 34547500149 scopus 로고    scopus 로고
    • Modelling drivers' compliance and route choice behaviour in response to travel information
    • DOI 10.1007/s11071-006-9111-3, Modelling and Control of Intelligent Transportation Systems
    • H. Dia, and S. Panwai 'Modelling drivers' compliance and route choice behavior in response to travel information Nonlinear Dynamics 49 2007 493 509 (Pubitemid 47179560)
    • (2007) Nonlinear Dynamics , vol.49 , Issue.4 , pp. 493-509
    • Dia, H.1    Panwai, S.2
  • 9
    • 0031284301 scopus 로고    scopus 로고
    • Development and evaluation of neural network freeway incident detection models using field data
    • H. Dia, and G. Rose Development and evaluation of neural network freeway incident detection models using field data Transportation Research Part C 5 1998 313 331
    • (1998) Transportation Research Part C , vol.5 , pp. 313-331
    • Dia, H.1    Rose, G.2
  • 10
    • 8644262601 scopus 로고    scopus 로고
    • Confidence intervals and prediction intervals for feed-forward neural networks
    • R. Dybowski, and S.J. Roberts Confidence intervals and prediction intervals for feed-forward neural networks R. Dybowski, V. Gant, Clinical Applications of Artificial Neural Networks' 2001 Cambridge University Press 298 327
    • (2001) Clinical Applications of Artificial Neural Networks' , pp. 298-327
    • Dybowski, R.1    Roberts, S.J.2
  • 11
    • 0003242437 scopus 로고
    • The jacknife, the bootstrap, and other resampling plans
    • SIAM Philadelphia, PA, USA
    • B. Efron The jacknife, the bootstrap, and other resampling plans Society for Industrial and Applied Mathematics 1982 SIAM Philadelphia, PA, USA
    • (1982) Society for Industrial and Applied Mathematics
    • Efron, B.1
  • 12
    • 0032157717 scopus 로고    scopus 로고
    • Expected shortest paths in dynamic and stochastic traffic networks
    • PII S0191261598000162
    • L. Fu, and L.R. Rilett Expected shortest paths in dynamic and stochastic traffic networks Transportation Research Part B 32 7 1998 499 516 (Pubitemid 128407016)
    • (1998) Transportation Research Part B: Methodological , vol.32 , Issue.7 , pp. 499-516
    • Fu, L.1    Rilett, L.R.2
  • 14
    • 0028543366 scopus 로고    scopus 로고
    • Training feed-forward networks with the Marquardt algorithm
    • M.T. Hagan, and M. Menhaj Training feed-forward networks with the Marquardt algorithm IEEE Transactions on Neural Networks 5 6 1999 989 993
    • (1999) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 16
    • 84977125093 scopus 로고
    • Learning translation invariant recognition in a massively parallel networks
    • Hinton, G.; 1987. Learning translation invariant recognition in a massively parallel networks, in: 'PARLE Parallel Architectures and Languages Europe', Edited by, pp. 113.
    • (1987) PARLE Parallel Architectures and Languages Europe , pp. 1-13
    • Hinton, G.1
  • 17
  • 20
    • 0029333129 scopus 로고
    • Modelling schedule deviations of buses using automatic vehicle location data and artificial neural networks
    • R. Kalaputapu, and M.J. Demetsky Modelling schedule deviations of buses using automatic vehicle location data and artificial neural networks Transportation Research Record 1497 1995 44 52
    • (1995) Transportation Research Record , vol.1497 , pp. 44-52
    • Kalaputapu, R.1    Demetsky, M.J.2
  • 22
    • 70449526290 scopus 로고    scopus 로고
    • A prediction interval-based approach to determine optimal structures of neural network metamodels
    • A. Khosravi, S. Nahavandi, and D. Creighton A prediction interval-based approach to determine optimal structures of neural network metamodels Expert Systems with Applications 37 3 2010 2377 2387
    • (2010) Expert Systems with Applications , vol.37 , Issue.3 , pp. 2377-2387
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 23
    • 77954834717 scopus 로고    scopus 로고
    • Construction of optimal prediction intervals for load forecasting problems
    • A. Khosravi, S. Nahavandi, and D. Creighton 'Construction of optimal prediction intervals for load forecasting problems IEEE Transactions on Power Systems 25 3 2010 1496 1503
    • (2010) IEEE Transactions on Power Systems , vol.25 , Issue.3 , pp. 1496-1503
    • Khosravi, A.1    Nahavandi, S.2    Creighton, D.3
  • 25
    • 79951947907 scopus 로고    scopus 로고
    • Development of degree of saturation estimation models for adaptive signal systems
    • S.S. Lee, S.H. Lee, Y.T. Oh, and K.C. Choi Development of degree of saturation estimation models for adaptive signal systems KSCE Journal of Civil Engineering 6 3 2002 337 345
    • (2002) KSCE Journal of Civil Engineering , vol.6 , Issue.3 , pp. 337-345
    • Lee, S.S.1    Lee, S.H.2    Oh, Y.T.3    Choi, K.C.4
  • 27
    • 77953062185 scopus 로고    scopus 로고
    • Ph.D. thesis, Delft University of Technology, the Netherlands
    • Liu, H.; 2008. Travel time prediction for urban networks, Ph.D. thesis, Delft University of Technology, the Netherlands.
    • (2008) Travel Time Prediction for Urban Networks
    • Liu, H.1
  • 29
    • 77955630545 scopus 로고    scopus 로고
    • Using GPS data to gain insight into public transport travel time variability
    • E. Mazloumi, G. Currie, and G. Rose Using GPS data to gain insight into public transport travel time variability Journal of Transportation Engineering 136 2010 623 631 7 2010 623 631
    • (2010) Journal of Transportation Engineering , vol.136 , pp. 623-631
    • Mazloumi, E.1    Currie, G.2    Rose, G.3
  • 31
    • 0242489523 scopus 로고    scopus 로고
    • Feature selection for intrusion detection using neural networks and support vector machines
    • S. Mukkamala, and A.H. Sung Feature selection for intrusion detection using neural networks and support vector machines Transportation Research Record 1823 2003 33 39
    • (2003) Transportation Research Record , vol.1823 , pp. 33-39
    • Mukkamala, S.1    Sung, A.H.2
  • 33
    • 0035505634 scopus 로고    scopus 로고
    • Confidence estimation methods for neural networks: A practical comparison
    • DOI 10.1109/72.963764, PII S1045922701095042
    • G. Papadopoulos, P.J. Edwards, and A.F. Murray Confidence estimation methods for neural networks: a practical comparison IEEE Transactions on Neural Networks 12 6 2001 1278 1287 (Pubitemid 33106033)
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1278-1287
    • Papadopoulos, G.1    Edwards, P.J.2    Murray, A.F.3
  • 34
    • 35048897050 scopus 로고    scopus 로고
    • A Bayesian approach for estimating link travel time on urban arterial road network
    • Park, T.; Lee, S.; 2004. A Bayesian approach for estimating link travel time on urban arterial road network. In: Computational Science and Its Applications ICCSA 2004, Edited by, pp. 10171025.
    • (2004) Computational Science and Its Applications - ICCSA 2004 , pp. 1017-1025
    • Park, T.1    Lee, S.2
  • 35
    • 0141613930 scopus 로고    scopus 로고
    • Dynamic and stochastic shortest path in transportation networks with two components of travel time uncertainty
    • DOI 10.1016/S0968-090X(03)00029-9
    • P. Pattanamekar, D. Park, L.R. Rilett, J. Lee, and C. Lee Dynamic and stochastic shortest path in transportation networks with two components of travel time uncertainty Transportation Research Part C: Emerging Technologies 11 5 2003 331 354 (Pubitemid 37216401)
    • (2003) Transportation Research Part C: Emerging Technologies , vol.11 , Issue.5 , pp. 331-354
    • Pattanamekar, P.1    Park, D.2    Rilett, L.R.3    Lee, J.4    Lee, C.5
  • 36
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • H. Peng, F. Long, and C. Ding Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy IEEE Transactions on Pattern Analysis and Machine Intelligence 27 8 2005 1226 1238 (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 37
    • 0035427685 scopus 로고    scopus 로고
    • An investigation of model selection criteria for neural network time series forecasting
    • DOI 10.1016/S0377-2217(00)00171-5, PII S0377221700001715
    • M. Qi, and G.P. Zhang An investigation of model selection criteria for neural network time series forecasting European Journal of Operational Research 132 3 2001 666 680 (Pubitemid 32487106)
    • (2001) European Journal of Operational Research , vol.132 , Issue.3 , pp. 666-680
    • Qi, M.1    Zhang, G.P.2
  • 38
    • 1842683778 scopus 로고    scopus 로고
    • Artificial neural network based line source models for vehicular exhaust emission predictions of an urban roadway
    • DOI 10.1016/j.trd.2004.01.002, PII S1361920904000033
    • S.M. Shiva Nagendra, and M. Khare Artificial neural network based line source models for vehicular exhaust emission predictions of an urban roadway Transportation Research Part D 9 3 2004 199 208 (Pubitemid 38462291)
    • (2004) Transportation Research Part D: Transport and Environment , vol.9 , Issue.3 , pp. 199-208
    • Nagendra, S.M.S.1    Khare, M.2
  • 39
    • 0001891123 scopus 로고
    • Short term traffic flow prediction: Neural network approach
    • B.L. Smith, and M.J. Demetsky Short term traffic flow prediction: neural network approach Transportation Research Record 1453 1995 98 104
    • (1995) Transportation Research Record , vol.1453 , pp. 98-104
    • Smith, B.L.1    Demetsky, M.J.2
  • 40
    • 0034159495 scopus 로고    scopus 로고
    • Comparison of feature selection techniques for ANN-based voltage estimation
    • DOI 10.1016/S0378-7796(99)00061-9
    • L. Srivastava, S.N. Singh, and J. Sharma Comparison of feature selection techniques for ANN-based voltage estimation Electric Power Systems Research 53 3 2000 187 195 (Pubitemid 30552804)
    • (2000) Electric Power Systems Research , vol.53 , Issue.3 , pp. 187-195
    • Srivastava, L.1    Singh, S.N.2    Sharma, J.3
  • 42
    • 67949102009 scopus 로고    scopus 로고
    • Bayesian committee of neural networks to predict travel times with confidence intervals
    • C.P.I. Van Hinsbergen, J.W.C. Van Lint, and H.J. Van Zuylen Bayesian committee of neural networks to predict travel times with confidence intervals Transportation Research Part C 17 5 2009 498 509
    • (2009) Transportation Research Part C , vol.17 , Issue.5 , pp. 498-509
    • Van Hinsbergen, C.P.I.1    Van Lint, J.W.C.2    Van Zuylen, H.J.3
  • 44
    • 33646762818 scopus 로고    scopus 로고
    • Accurate freeway travel time prediction with state-space neural networks under missing data
    • J.W.C. Van Lint, S.P. Hoogendoorn, and H.J. Van Zuylen Accurate freeway travel time prediction with state-space neural networks under missing data Transportation Research Part C 13 56 2005 347 369
    • (2005) Transportation Research Part C , vol.13 , Issue.56 , pp. 347-369
    • Van Lint, J.W.C.1    Hoogendoorn, S.P.2    Van Zuylen, H.J.3
  • 45
    • 34548502433 scopus 로고    scopus 로고
    • Predicting motor vehicle collisions using Bayesian neural network models: An empirical analysis
    • DOI 10.1016/j.aap.2006.12.014, PII S0001457507000073
    • Y. Xie, D. Lord, and Y. Zhang Predicting motor vehicle collisions using Bayesian neural networks: an empirical analysis Accident Analysis & Prevention 39 2007 922 933 5 2007 922 933 (Pubitemid 47374052)
    • (2007) Accident Analysis and Prevention , vol.39 , Issue.5 , pp. 922-933
    • Xie, Y.1    Lord, D.2    Zhang, Y.3
  • 46
    • 33846855146 scopus 로고    scopus 로고
    • Modeling crack deterioration of flexible pavements: Comparison of recurrent Markov chains and artificial neural networks
    • Pavement Management; Monitoring, Evaluation and Data Storage; and Accelerated Testing 2006
    • J. Yang, J.J. Lu, M. Gunaratne, and B. Dietrich Modeling crack deterioration of flexible pavements: comparison of recurrent Markov chains and artificial neural networks Transportation Research Record 1974 2006 18 25 (Pubitemid 46219552)
    • (2006) Transportation Research Record , Issue.1974 , pp. 18-25
    • Yang, J.1    Lu, J.J.2    Gunaratne, M.3    Dietrich, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.