메뉴 건너뛰기




Volumn 27, Issue 4, 2012, Pages 558-575

Sparse estimation by exponential weighting

Author keywords

Exponential weights; Fused sparsity; Group sparsity; High dimensional regression; Sparse regression; Sparsity; Sparsity oracle inequalities; Sparsity pattern aggregation; Sparsity prior

Indexed keywords


EID: 84871564349     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/12-STS393     Document Type: Article
Times cited : (83)

References (44)
  • 1
    • 79960999147 scopus 로고    scopus 로고
    • PAC-Bayesian bounds for sparse regression estimation with exponential weights
    • ALQUIER, P. and LOUNICI, K. (2011). PAC-Bayesian bounds for sparse regression estimation with exponential weights. Electron. J. Stat. 5 127-145.
    • (2011) Electron. J. Stat. , vol.5 , pp. 127-145
    • Alquier, P.1    Lounici, K.2
  • 2
    • 55649115527 scopus 로고    scopus 로고
    • A simple proof of the restricted isometry property for random matrices
    • BARANIUK, R., DAVENPORT, M., DEVORE, R. andWAKIN, M. (2008). A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28 253-263.
    • (2008) Constr. Approx. , vol.28 , pp. 253-263
    • Baraniuk, R.1    Davenport, M.2    Devore, R.3    Wakin, M.4
  • 4
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and Dantzig selector
    • BICKEL, P. J., RITOV, Y. and TSYBAKOV, A. B. (2009). Simultaneous analysis of lasso and Dantzig selector. Ann. Statist. 37 1705-1732.
    • (2009) Ann. Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 6
    • 80053013888 scopus 로고    scopus 로고
    • Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection
    • BREHENY, P. and HUANG, J. (2011). Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. Ann. Appl. Stat. 5 232-253.
    • (2011) Ann. Appl. Stat. , vol.5 , pp. 232-253
    • Breheny, P.1    Huang, J.2
  • 7
    • 38049043619 scopus 로고    scopus 로고
    • Aggregation for Gaussian regression
    • BUNEA, F., TSYBAKOV, A. B. andWEGKAMP, M. H. (2007). Aggregation for Gaussian regression. Ann. Statist. 35 1674-1697.
    • (2007) Ann. Statist. , vol.35 , pp. 1674-1697
    • Bunea, F.1    Tsybakov, A.B.2    Wegkamp, M.H.3
  • 8
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • CANDES, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 2313- 2351.
    • (2007) Ann. Statist. , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 9
    • 0141577431 scopus 로고    scopus 로고
    • Technical report, Laboratoire de Probabilités et Modeles Aléatoires, Preprint
    • CATONI, O. (1999). Universal aggregation rules with exact bias bounds. Technical report, Laboratoire de Probabilités et Modeles Aléatoires, Preprint 510.
    • (1999) Universal aggregation rules with exact bias bounds , pp. 510
    • Catoni, O.1
  • 10
    • 33646360369 scopus 로고    scopus 로고
    • Statistical Learning Theory and Stochastic Optimization
    • Springer, Berlin
    • CATONI, O. (2004). Statistical Learning Theory and Stochastic Optimization. Lecture Notes in Math. 1851. Springer, Berlin.
    • (2004) Lecture Notes in Math , pp. 1851
    • Catoni, O.1
  • 11
    • 77956910901 scopus 로고    scopus 로고
    • Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning
    • IMS, Beachwood, OH
    • CATONI, O. (2007). Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning. Institute of Mathematical Statistics Lecture Notes-Monograph Series 56. IMS, Beachwood, OH.
    • (2007) Institute of Mathematical Statistics Lecture Notes-Monograph Series , pp. 56
    • Catoni, O.1
  • 13
    • 38049046503 scopus 로고    scopus 로고
    • Aggregation by exponential weighting and sharp oracle inequalities
    • Springer, Berlin
    • DALALYAN, A. S. and TSYBAKOV, A. B. (2007). Aggregation by exponential weighting and sharp oracle inequalities. In Learning Theory. Lecture Notes in Computer Science 4539 97-111. Springer, Berlin.
    • (2007) Learning Theory. Lecture Notes in Computer Science. , vol.4539 , pp. 97-111
    • Dalalyan, A.S.1    Tsybakov, A.B.2
  • 14
    • 70350003059 scopus 로고    scopus 로고
    • Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity
    • DALALYAN, A. and TSYBAKOV, A. B. (2008). Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity. Mach. Learn. 72 39-61.
    • (2008) Mach. Learn. , vol.72 , pp. 39-61
    • Dalalyan, A.1    Tsybakov, A.B.2
  • 15
    • 84871602377 scopus 로고    scopus 로고
    • Mirror averaging with sparsity priors
    • DALALYAN, A. and TSYBAKOV, A. B. (2012). Mirror averaging with sparsity priors. Bernoulli 18 914-944.
    • (2012) Bernoulli , vol.18 , pp. 914-944
    • Dalalyan, A.1    Tsybakov, A.B.2
  • 16
    • 84861604276 scopus 로고    scopus 로고
    • Sparse regression learning by aggregation and Langevin Monte-Carlo
    • DALALYAN, A. S. and TSYBAKOV, A. B. (2012). Sparse regression learning by aggregation and Langevin Monte-Carlo. J. Comput. System Sci. 78 1423-1443.
    • (2012) J. Comput. System Sci. , vol.78 , pp. 1423-1443
    • Dalalyan, A.S.1    Tsybakov, A.B.2
  • 17
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • FAN, J. and LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 18
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2010). Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33 1-22.
    • (2010) J. Stat. Softw. , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 21
    • 58149358999 scopus 로고    scopus 로고
    • Mixing least-squares estimators when the variance is unknown
    • GIRAUD, C. (2008). Mixing least-squares estimators when the variance is unknown. Bernoulli 14 1089-1107.
    • (2008) Bernoulli , vol.14 , pp. 1089-1107
    • Giraud, C.1
  • 22
    • 77955136689 scopus 로고    scopus 로고
    • The benefit of group sparsity
    • HUANG, J. and ZHANG, T. (2010). The benefit of group sparsity. Ann. Statist. 38 1978-2004.
    • (2010) Ann. Statist. , vol.38 , pp. 1978-2004
    • Huang, J.1    Zhang, T.2
  • 24
    • 31344435933 scopus 로고    scopus 로고
    • Recursive aggregation of estimators by the mirror descent method with averaging
    • JUDITSKY, A. B., NAZIN, A. V., TSYBAKOV, A. B. and VAYATIS, N. (2005). Recursive aggregation of estimators by the mirror descent method with averaging. Probl. Inf. Transm. 41 368-384.
    • (2005) Probl. Inf. Transm. , vol.41 , pp. 368-384
    • Juditsky, A.B.1    Nazin, A.V.2    Tsybakov, A.B.3    Vayatis, N.4
  • 25
    • 21844488410 scopus 로고
    • Ordered linear smoothers
    • KNEIP, A. (1994). Ordered linear smoothers. Ann. Statist. 22 835- 866.
    • (1994) Ann. Statist. , vol.22 , pp. 835-866
    • Kneip, A.1
  • 26
    • 82655171609 scopus 로고    scopus 로고
    • Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion
    • KOLTCHINSKII, V., LOUNICI, K. and TSYBAKOV, A. B. (2011). Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion. Ann. Statist. 39 2302-2329.
    • (2011) Ann. Statist. , vol.39 , pp. 2302-2329
    • Koltchinskii, V.1    Lounici, K.2    Tsybakov, A.B.3
  • 27
    • 48849097549 scopus 로고    scopus 로고
    • Simultaneous adaptation to the margin and to complexity in classification
    • LECUÉ, G. (2007). Simultaneous adaptation to the margin and to complexity in classification. Ann. Statist. 35 1698-1721.
    • (2007) Ann. Statist. , vol.35 , pp. 1698-1721
    • Lecué, G.1
  • 28
    • 84871594826 scopus 로고    scopus 로고
    • Empirical risk minimization is optimal for the Convex aggregation problem
    • To appear
    • LECUÉ, G. (2012). Empirical risk minimization is optimal for the Convex aggregation problem. Bernoulli. To appear.
    • (2012) Bernoulli
    • Lecué, G.1
  • 29
    • 33746478298 scopus 로고    scopus 로고
    • Information theory and mixing least-squares regressions
    • LEUNG, G. and BARRON, A. R. (2006). Information theory and mixing least-squares regressions. IEEE Trans. Inform. Theory 52 3396-3410.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 3396-3410
    • Leung, G.1    Barron, A.R.2
  • 30
    • 84855412474 scopus 로고    scopus 로고
    • Oracle inequalities and optimal inference under group sparsity
    • LOUNICI, K., PONTIL, M., VAN DE GEER, S. and TSYBAKOV, A. B. (2011). Oracle inequalities and optimal inference under group sparsity. Ann. Statist. 39 2164-2204.
    • (2011) Ann. Statist. , vol.39 , pp. 2164-2204
    • Lounici, K.1    Pontil, M.2    Van Geer De, S.3    Tsybakov, A.B.4
  • 31
    • 23744490659 scopus 로고    scopus 로고
    • Complexity regularization via localized random penalties
    • LUGOSI, G. and WEGKAMP, M. (2004). Complexity regularization via localized random penalties. Ann. Statist. 32 1679-1697.
    • (2004) Ann. Statist. , vol.32 , pp. 1679-1697
    • Lugosi, G.1    Wegkamp, M.2
  • 33
    • 84866861743 scopus 로고    scopus 로고
    • Kullback-Leibler aggregation and misspecified generalized linear models
    • RIGOLLET, P. (2012). Kullback-Leibler aggregation and misspecified generalized linear models. Ann. Statist. 40 639-665.
    • (2012) Ann. Statist. , vol.40 , pp. 639-665
    • Rigollet, P.1
  • 34
    • 77955137685 scopus 로고    scopus 로고
    • Linear and convex aggregation of density estimators
    • RIGOLLET, P. and TSYBAKOV, A. B. (2007). Linear and convex aggregation of density estimators. Math. Methods Statist. 16 260-280.
    • (2007) Math. Methods Statist. , vol.16 , pp. 260-280
    • Rigollet, P.1    Tsybakov, A.B.2
  • 35
    • 79952982333 scopus 로고    scopus 로고
    • Exponential screening and optimal rates of sparse estimation
    • RIGOLLET, P. and TSYBAKOV, A. (2011). Exponential screening and optimal rates of sparse estimation. Ann. Statist. 39 731-771.
    • (2011) Ann. Statist. , vol.39 , pp. 731-771
    • Rigollet, P.1    Tsybakov, A.2
  • 37
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • RUDIN, L. I., OSHER, S. and FATEMI, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60 259-268.
    • (1992) Physica D: Nonlinear Phenomena , vol.60 , pp. 259-268
    • Rudin, L.I.1    Osher, S.2    Fatemi, E.3
  • 39
    • 9444226947 scopus 로고    scopus 로고
    • Optimal rates of aggregation
    • COLT (B. Schölkopf andM. K. Warmuth, eds. ). Springer, Berlin
    • TSYBAKOV, A. B. (2003). Optimal rates of aggregation. In COLT (B. Schölkopf andM. K. Warmuth, eds.). Lecture Notes in Computer Science 2777 303-313. Springer, Berlin.
    • (2003) Lecture Notes in Computer Science , vol.2777 , pp. 303-313
    • Tsybakov, A.B.1
  • 41
    • 21144432799 scopus 로고    scopus 로고
    • Model selection in nonparametric regression
    • WEGKAMP, M. (2003). Model selection in nonparametric regression. Ann. Statist. 31 252-273.
    • (2003) Ann. Statist. , vol.31 , pp. 252-273
    • Wegkamp, M.1
  • 42
    • 29144460670 scopus 로고    scopus 로고
    • Aggregating regression procedures to improve performance
    • YANG, Y. (2004). Aggregating regression procedures to improve performance. Bernoulli 10 25-47.
    • (2004) Bernoulli , vol.10 , pp. 25-47
    • Yang, Y.1
  • 43
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • YUAN, M. and LIN, Y. (2006). Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 49-67.
    • (2006) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 44
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • ZHANG, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. Ann. Statist. 38 894-942.
    • (2010) Ann. Statist. , vol.38 , pp. 894-942
    • Zhang, C.-H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.