메뉴 건너뛰기




Volumn 19, Issue , 2014, Pages 130-134

Crosstalk between the nucleotide excision repair and Fanconi anemia/BRCA pathways

Author keywords

BRCA; Crosslink repair; Fanconi anemia; Nucleotide excision repair; PARP inhibitor

Indexed keywords

ADENOSINE TRIPHOSPHATASE; BRCA2 PROTEIN; FANCONI ANEMIA PROTEIN; BRCA1 PROTEIN; BRCA2 PROTEIN, HUMAN;

EID: 84902077532     PISSN: 15687864     EISSN: 15687856     Source Type: Journal    
DOI: 10.1016/j.dnarep.2014.03.019     Document Type: Article
Times cited : (27)

References (42)
  • 1
    • 84863670930 scopus 로고    scopus 로고
    • Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway
    • Kim H., D'Andrea A.D. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 2012, 26(13):1393-1408.
    • (2012) Genes Dev. , vol.26 , Issue.13 , pp. 1393-1408
    • Kim, H.1    D'Andrea, A.D.2
  • 2
    • 82955235602 scopus 로고    scopus 로고
    • Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway
    • Rosado I.V., et al. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway. Nat. Struct. Mol. Biol. 2011, 18(12):1432-1434.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , Issue.12 , pp. 1432-1434
    • Rosado, I.V.1
  • 3
    • 79960037006 scopus 로고    scopus 로고
    • Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice
    • Langevin F., et al. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 2011, 475(7354):53-58.
    • (2011) Nature , vol.475 , Issue.7354 , pp. 53-58
    • Langevin, F.1
  • 4
    • 84868613789 scopus 로고    scopus 로고
    • Molecular pathogenesis and clinical management of Fanconi anemia
    • Kee Y., D'Andrea A.D. Molecular pathogenesis and clinical management of Fanconi anemia. J. Clin. Invest. 2012, 122(11):3799-3806.
    • (2012) J. Clin. Invest. , vol.122 , Issue.11 , pp. 3799-3806
    • Kee, Y.1    D'Andrea, A.D.2
  • 5
    • 13244291457 scopus 로고    scopus 로고
    • The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway
    • Nijman S.M., et al. The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol. Cell 2005, 17(3):331-339.
    • (2005) Mol. Cell , vol.17 , Issue.3 , pp. 331-339
    • Nijman, S.M.1
  • 8
    • 49949152164 scopus 로고    scopus 로고
    • Nucleotide excision repair deficient mouse models and neurological disease
    • Niedernhofer L.J. Nucleotide excision repair deficient mouse models and neurological disease. DNA Repair (Amst.) 2008, 7(7):1180-1189.
    • (2008) DNA Repair (Amst.) , vol.7 , Issue.7 , pp. 1180-1189
    • Niedernhofer, L.J.1
  • 9
    • 84877584276 scopus 로고    scopus 로고
    • Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia
    • Bogliolo M., et al. Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. Am. J. Hum. Genet. 2013, 92(5):800-806.
    • (2013) Am. J. Hum. Genet. , vol.92 , Issue.5 , pp. 800-806
    • Bogliolo, M.1
  • 10
    • 84877580404 scopus 로고    scopus 로고
    • Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia
    • Kashiyama K., et al. Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia. Am. J. Hum. Genet. 2013, 92(5):807-819.
    • (2013) Am. J. Hum. Genet. , vol.92 , Issue.5 , pp. 807-819
    • Kashiyama, K.1
  • 11
    • 77950455401 scopus 로고    scopus 로고
    • Mislocalization of XPF-ERCC1 nuclease contributes to reduced DNA repair in XP-F patients
    • Ahmad A., et al. Mislocalization of XPF-ERCC1 nuclease contributes to reduced DNA repair in XP-F patients. PLoS Genet. 2010, 6(3):e1000871.
    • (2010) PLoS Genet. , vol.6 , Issue.3
    • Ahmad, A.1
  • 12
    • 79960394750 scopus 로고    scopus 로고
    • Physiological consequences of defects in ERCC1-XPF DNA repair endonuclease
    • Gregg S.Q., Robinson A.R., Niedernhofer L.J. Physiological consequences of defects in ERCC1-XPF DNA repair endonuclease. DNA Repair (Amst.) 2011, 10(7):781-791.
    • (2011) DNA Repair (Amst.) , vol.10 , Issue.7 , pp. 781-791
    • Gregg, S.Q.1    Robinson, A.R.2    Niedernhofer, L.J.3
  • 13
    • 20844442267 scopus 로고    scopus 로고
    • The XPF-ERCC1 endonuclease and homologous recombination contribute to the repair of minor groove DNA interstrand crosslinks in mammalian cells produced by the pyrrolo[2,1-c][1,4]benzodiazepine dimer SJG-136
    • Clingen P.H., et al. The XPF-ERCC1 endonuclease and homologous recombination contribute to the repair of minor groove DNA interstrand crosslinks in mammalian cells produced by the pyrrolo[2,1-c][1,4]benzodiazepine dimer SJG-136. Nucleic Acids Res. 2005, 33(10):3283-3291.
    • (2005) Nucleic Acids Res. , vol.33 , Issue.10 , pp. 3283-3291
    • Clingen, P.H.1
  • 14
    • 0033781210 scopus 로고    scopus 로고
    • Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells
    • De Silva I.U., et al. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol. Cell Biol. 2000, 20(21):7980-7990.
    • (2000) Mol. Cell Biol. , vol.20 , Issue.21 , pp. 7980-7990
    • De Silva, I.U.1
  • 15
    • 0018844455 scopus 로고
    • DNA repair in human cells containing photoadducts of 8-methoxypsoralen or angelicin
    • Kaye J., Smith C.A., Hanawalt P.C. DNA repair in human cells containing photoadducts of 8-methoxypsoralen or angelicin. Cancer Res. 1980, 40(3):696-702.
    • (1980) Cancer Res. , vol.40 , Issue.3 , pp. 696-702
    • Kaye, J.1    Smith, C.A.2    Hanawalt, P.C.3
  • 16
    • 0035132725 scopus 로고    scopus 로고
    • Involvement of nucleotide excision repair in a recombination-independent and error-prone pathway of DNA interstrand cross-link repair
    • Wang X., et al. Involvement of nucleotide excision repair in a recombination-independent and error-prone pathway of DNA interstrand cross-link repair. Mol. Cell Biol. 2001, 21(3):713-720.
    • (2001) Mol. Cell Biol. , vol.21 , Issue.3 , pp. 713-720
    • Wang, X.1
  • 17
    • 84867568370 scopus 로고    scopus 로고
    • Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis
    • Enoiu M., Jiricny J., Scharer O.D. Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucleic Acids Res. 2012, 40(18):8953-8964.
    • (2012) Nucleic Acids Res. , vol.40 , Issue.18 , pp. 8953-8964
    • Enoiu, M.1    Jiricny, J.2    Scharer, O.D.3
  • 18
    • 69749106825 scopus 로고    scopus 로고
    • Recruitment of Fanconi anemia and breast cancer proteins to DNA damage sites is differentially governed by replication
    • Shen X., et al. Recruitment of Fanconi anemia and breast cancer proteins to DNA damage sites is differentially governed by replication. Mol. Cell 2009, 35(5):716-723.
    • (2009) Mol. Cell , vol.35 , Issue.5 , pp. 716-723
    • Shen, X.1
  • 19
    • 84872037739 scopus 로고    scopus 로고
    • The Fanconi anaemia components UBE2T and FANCM are functionally linked to nucleotide excision repair
    • Kelsall I.R., et al. The Fanconi anaemia components UBE2T and FANCM are functionally linked to nucleotide excision repair. PLoS One 2012, 7(5):e36970.
    • (2012) PLoS One , vol.7 , Issue.5
    • Kelsall, I.R.1
  • 20
    • 67249113070 scopus 로고    scopus 로고
    • Flipping of alkylated DNA damage bridges base and nucleotide excision repair
    • Tubbs J.L., et al. Flipping of alkylated DNA damage bridges base and nucleotide excision repair. Nature 2009, 459(7248):808-813.
    • (2009) Nature , vol.459 , Issue.7248 , pp. 808-813
    • Tubbs, J.L.1
  • 21
    • 70349944658 scopus 로고    scopus 로고
    • Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response
    • Marteijn J.A., et al. Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. J. Cell Biol. 2009, 186(6):835-847.
    • (2009) J. Cell Biol. , vol.186 , Issue.6 , pp. 835-847
    • Marteijn, J.A.1
  • 22
    • 84867706701 scopus 로고    scopus 로고
    • Nucleotide excision repair: new tricks with old bricks
    • Kamileri I., Karakasilioti I., Garinis G.A. Nucleotide excision repair: new tricks with old bricks. Trends Genet. 2012, 28(11):566-573.
    • (2012) Trends Genet. , vol.28 , Issue.11 , pp. 566-573
    • Kamileri, I.1    Karakasilioti, I.2    Garinis, G.A.3
  • 23
    • 84861939507 scopus 로고    scopus 로고
    • DDB2 promotes chromatin decondensation at UV-induced DNA damage
    • Luijsterburg M.S., et al. DDB2 promotes chromatin decondensation at UV-induced DNA damage. J. Cell Biol. 2012, 197(2):267-281.
    • (2012) J. Cell Biol. , vol.197 , Issue.2 , pp. 267-281
    • Luijsterburg, M.S.1
  • 24
    • 48549085044 scopus 로고    scopus 로고
    • The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A
    • Guerrero-Santoro J., et al. The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A. Cancer Res. 2008, 68(13):5014-5022.
    • (2008) Cancer Res. , vol.68 , Issue.13 , pp. 5014-5022
    • Guerrero-Santoro, J.1
  • 25
    • 84869111403 scopus 로고    scopus 로고
    • PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1
    • Pines A., et al. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. J. Cell Biol. 2012, 199(2):235-249.
    • (2012) J. Cell Biol. , vol.199 , Issue.2 , pp. 235-249
    • Pines, A.1
  • 26
    • 84866121561 scopus 로고    scopus 로고
    • Histone chaperone activity of Fanconi anemia proteins, FANCD2 and FANCI is required for DNA crosslink repair
    • Sato K., et al. Histone chaperone activity of Fanconi anemia proteins, FANCD2 and FANCI is required for DNA crosslink repair. EMBO J. 2012, 31(17):3524-3536.
    • (2012) EMBO J. , vol.31 , Issue.17 , pp. 3524-3536
    • Sato, K.1
  • 27
    • 44349175545 scopus 로고    scopus 로고
    • Tip60 is required for DNA interstrand cross-link repair in the Fanconi anemia pathway
    • Hejna J., et al. Tip60 is required for DNA interstrand cross-link repair in the Fanconi anemia pathway. J. Biol. Chem. 2008, 283(15):9844-9851.
    • (2008) J. Biol. Chem. , vol.283 , Issue.15 , pp. 9844-9851
    • Hejna, J.1
  • 28
    • 0033806183 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor
    • Citterio E., et al. ATP-dependent chromatin remodeling by the Cockayne syndrome B DNA repair-transcription-coupling factor. Mol. Cell Biol. 2000, 20(20):7643-7653.
    • (2000) Mol. Cell Biol. , vol.20 , Issue.20 , pp. 7643-7653
    • Citterio, E.1
  • 29
    • 77950443318 scopus 로고    scopus 로고
    • NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack
    • Le May N., et al. NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Mol. Cell 2010, 38(1):54-66.
    • (2010) Mol. Cell , vol.38 , Issue.1 , pp. 54-66
    • Le May, N.1
  • 30
    • 80053538947 scopus 로고    scopus 로고
    • A DNA repair complex functions as an Oct4/Sox2 coactivator in embryonic stem cells
    • Fong Y.W., et al. A DNA repair complex functions as an Oct4/Sox2 coactivator in embryonic stem cells. Cell 2011, 147(1):120-131.
    • (2011) Cell , vol.147 , Issue.1 , pp. 120-131
    • Fong, Y.W.1
  • 31
    • 84880768870 scopus 로고    scopus 로고
    • FANCD2 activates transcription of TAp63 and suppresses tumorigenesis
    • Park E., et al. FANCD2 activates transcription of TAp63 and suppresses tumorigenesis. Mol. Cell 2013, 50(6):908-918.
    • (2013) Mol. Cell , vol.50 , Issue.6 , pp. 908-918
    • Park, E.1
  • 32
    • 78049416267 scopus 로고    scopus 로고
    • Cytokinesis failure occurs in Fanconi anemia pathway-deficient murine and human bone marrow hematopoietic cells
    • Vinciguerra P., et al. Cytokinesis failure occurs in Fanconi anemia pathway-deficient murine and human bone marrow hematopoietic cells. J. Clin. Invest. 2010, 120(11):3834-3842.
    • (2010) J. Clin. Invest. , vol.120 , Issue.11 , pp. 3834-3842
    • Vinciguerra, P.1
  • 33
    • 67349187702 scopus 로고    scopus 로고
    • The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities
    • Naim V., Rosselli F. The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat. Cell Biol. 2009, 11(6):761-768.
    • (2009) Nat. Cell Biol. , vol.11 , Issue.6 , pp. 761-768
    • Naim, V.1    Rosselli, F.2
  • 34
    • 84883529822 scopus 로고    scopus 로고
    • Fanconi anemia signaling network regulates the spindle assembly checkpoint
    • Nalepa G., et al. Fanconi anemia signaling network regulates the spindle assembly checkpoint. J. Clin. Invest. 2013, 123(9):3839-3847.
    • (2013) J. Clin. Invest. , vol.123 , Issue.9 , pp. 3839-3847
    • Nalepa, G.1
  • 35
    • 77956002171 scopus 로고    scopus 로고
    • MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation
    • Ito S., et al. MMXD, a TFIIH-independent XPD-MMS19 protein complex involved in chromosome segregation. Mol. Cell 2010, 39(4):632-640.
    • (2010) Mol. Cell , vol.39 , Issue.4 , pp. 632-640
    • Ito, S.1
  • 36
    • 77950387634 scopus 로고    scopus 로고
    • Drosophila Xpd regulates Cdk7 localization, mitotic kinase activity, spindle dynamics, and chromosome segregation
    • Li X., Urwyler O., Suter B. Drosophila Xpd regulates Cdk7 localization, mitotic kinase activity, spindle dynamics, and chromosome segregation. PLoS Genet. 2010, 6(3):e1000876.
    • (2010) PLoS Genet. , vol.6 , Issue.3
    • Li, X.1    Urwyler, O.2    Suter, B.3
  • 37
    • 0038157142 scopus 로고    scopus 로고
    • Xpd/Ercc2 regulates CAK activity and mitotic progression
    • Chen J., et al. Xpd/Ercc2 regulates CAK activity and mitotic progression. Nature 2003, 424(6945):228-232.
    • (2003) Nature , vol.424 , Issue.6945 , pp. 228-232
    • Chen, J.1
  • 38
    • 84897022815 scopus 로고    scopus 로고
    • Comprehensive molecular characterization of urothelial bladder carcinoma
    • The Cancer Genome Atlas Research Network
    • The Cancer Genome Atlas Research Network Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014, 507:315-322.
    • (2014) Nature , vol.507 , pp. 315-322
  • 39
    • 84887662629 scopus 로고    scopus 로고
    • Cancer. Potential of the synthetic lethality principle
    • Nijman S.M., Friend S.H. Cancer. Potential of the synthetic lethality principle. Science 2013, 342(6160):809-811.
    • (2013) Science , vol.342 , Issue.6160 , pp. 809-811
    • Nijman, S.M.1    Friend, S.H.2
  • 40
    • 17244373777 scopus 로고    scopus 로고
    • Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy
    • Farmer H., et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005, 434(7035):917-921.
    • (2005) Nature , vol.434 , Issue.7035 , pp. 917-921
    • Farmer, H.1
  • 41
    • 17244375049 scopus 로고    scopus 로고
    • Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase
    • Bryant H.E., et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005, 434(7035):913-917.
    • (2005) Nature , vol.434 , Issue.7035 , pp. 913-917
    • Bryant, H.E.1
  • 42
    • 84880537027 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase inhibitors as cancer therapy
    • Hilton J.F., et al. Poly(ADP-ribose) polymerase inhibitors as cancer therapy. Front. Biosci. (Landmark Ed.) 2013, 18:1392-1406.
    • (2013) Front. Biosci. (Landmark Ed.) , vol.18 , pp. 1392-1406
    • Hilton, J.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.