메뉴 건너뛰기




Volumn 36, Issue 7, 2014, Pages 687-696

Bacterial subversion of host cytoskeletal machinery: Hijacking formins and the Arp2/3 complex

Author keywords

Actin based motility; Arp2 3; Formins; Host pathogen interactions

Indexed keywords

ACTIN BINDING PROTEIN; ACTIN RELATED PROTEIN 2-3 COMPLEX; BACTERIAL PROTEIN; CYTOCHALASIN D; F ACTIN; FMNL1 PROTEIN; FORMIN PROTEIN; GUANINE NUCLEOTIDE EXCHANGE FACTOR; NEURAL WISKOTT ALDRICH SYNDROME PROTEIN; RHO GUANINE NUCLEOTIDE BINDING PROTEIN; RHO KINASE; SMALL INTERFERING RNA; UNCLASSIFIED DRUG; WISKOTT ALDRICH SYNDROME PROTEIN;

EID: 84901927417     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201400038     Document Type: Review
Times cited : (26)

References (120)
  • 1
    • 84871519238 scopus 로고    scopus 로고
    • New insights into the regulation and cellular functions of the ARP2/3 complex
    • Rotty JD, Wu C, Bear JE. 2013. New insights into the regulation and cellular functions of the ARP2/3 complex. Nat Rev Mol Cell Biol 14: 7-12.
    • (2013) Nat Rev Mol Cell Biol , vol.14 , pp. 7-12
    • Rotty, J.D.1    Wu, C.2    Bear, J.E.3
  • 2
    • 77952896939 scopus 로고    scopus 로고
    • Control of actin filament treadmilling in cell motility
    • Bugyi B, Carlier MF. 2010. Control of actin filament treadmilling in cell motility. Annu Rev Biophys 39: 449-70.
    • (2010) Annu Rev Biophys , vol.39 , pp. 449-470
    • Bugyi, B.1    Carlier, M.F.2
  • 3
    • 79951556468 scopus 로고    scopus 로고
    • New mechanisms and functions of actin nucleation
    • Firat-Karalar EN, Welch MD. 2011. New mechanisms and functions of actin nucleation. Curr Opin Cell Biol 23: 4-13.
    • (2011) Curr Opin Cell Biol , vol.23 , pp. 4-13
    • Firat-Karalar, E.N.1    Welch, M.D.2
  • 4
    • 0028136434 scopus 로고
    • Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose
    • Machesky LM, Atkinson SJ, Ampe C, Vandekerckhove J, et al. 1994. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J Cell Biol 127: 107-15.
    • (1994) J Cell Biol , vol.127 , pp. 107-115
    • Machesky, L.M.1    Atkinson, S.J.2    Ampe, C.3    Vandekerckhove, J.4
  • 5
    • 0028786352 scopus 로고
    • Sequences, structural models, and cellular localization of the actin-related proteins Arp2 and Arp3 from Acanthamoeba
    • Kelleher JF, Atkinson SJ, Pollard TD. 1995. Sequences, structural models, and cellular localization of the actin-related proteins Arp2 and Arp3 from Acanthamoeba. J Cell Biol 131: 385-97.
    • (1995) J Cell Biol , vol.131 , pp. 385-397
    • Kelleher, J.F.1    Atkinson, S.J.2    Pollard, T.D.3
  • 6
    • 0035910096 scopus 로고    scopus 로고
    • Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy
    • Amann KJ, Pollard TD. 2001. Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy. Proc Natl Acad Sci USA 98: 15009-13.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 15009-15013
    • Amann, K.J.1    Pollard, T.D.2
  • 7
    • 0032568650 scopus 로고    scopus 로고
    • The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments
    • Mullins RD, Heuser JA, Pollard TD. 1998. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 95: 6181-6.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 6181-6186
    • Mullins, R.D.1    Heuser, J.A.2    Pollard, T.D.3
  • 8
    • 6344258806 scopus 로고    scopus 로고
    • Critical conformational changes in the Arp2/3 complex are induced by nucleotide and nucleation promoting factor
    • Goley ED, Rodenbusch SE, Martin AC, Welch MD. 2004. Critical conformational changes in the Arp2/3 complex are induced by nucleotide and nucleation promoting factor. Mol Cell 16: 269-79.
    • (2004) Mol Cell , vol.16 , pp. 269-279
    • Goley, E.D.1    Rodenbusch, S.E.2    Martin, A.C.3    Welch, M.D.4
  • 9
    • 30844466190 scopus 로고    scopus 로고
    • Protein complexes regulating Arp2/3-mediated actin assembly
    • Stradal TE, Scita G. 2006. Protein complexes regulating Arp2/3-mediated actin assembly. Curr Opin Cell Biol 18: 4-10.
    • (2006) Curr Opin Cell Biol , vol.18 , pp. 4-10
    • Stradal, T.E.1    Scita, G.2
  • 11
    • 80051977000 scopus 로고    scopus 로고
    • Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex
    • Ti SC, Jurgenson CT, Nolen BJ, Pollard TD. 2011. Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex. Proc Natl Acad Sci USA 108: E463-71.
    • (2011) Proc Natl Acad Sci USA , vol.108
    • Ti, S.C.1    Jurgenson, C.T.2    Nolen, B.J.3    Pollard, T.D.4
  • 12
    • 11444267246 scopus 로고    scopus 로고
    • Conformational changes in the Arp2/3 complex leading to actin nucleation
    • Rodal AA, Sokolova O, Robins DB, Daugherty KM, et al. 2005. Conformational changes in the Arp2/3 complex leading to actin nucleation. Nat Struct Mol Biol 12: 26-31.
    • (2005) Nat Struct Mol Biol , vol.12 , pp. 26-31
    • Rodal, A.A.1    Sokolova, O.2    Robins, D.B.3    Daugherty, K.M.4
  • 13
    • 84884676960 scopus 로고    scopus 로고
    • Mechanism of synergistic activation of Arp2/3 complex by cortactin and N-WASP
    • Helgeson LA, Nolen BJ. 2013. Mechanism of synergistic activation of Arp2/3 complex by cortactin and N-WASP. Elife 2: e00884.
    • (2013) Elife , vol.2
    • Helgeson, L.A.1    Nolen, B.J.2
  • 14
    • 0025007616 scopus 로고
    • Formins': proteins deduced from the alternative transcripts of the limb deformity gene
    • Woychik RP, Maas RL, Zeller R, Vogt TF, et al. 1990. 'Formins': proteins deduced from the alternative transcripts of the limb deformity gene. Nature 346: 850-3.
    • (1990) Nature , vol.346 , pp. 850-853
    • Woychik, R.P.1    Maas, R.L.2    Zeller, R.3    Vogt, T.F.4
  • 15
    • 0028053435 scopus 로고
    • Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene
    • Castrillon DH, Wasserman SA. 1994. Diaphanous is required for cytokinesis in Drosophila and shares domains of similarity with the products of the limb deformity gene. Development 120: 3367-77.
    • (1994) Development , vol.120 , pp. 3367-3377
    • Castrillon, D.H.1    Wasserman, S.A.2
  • 16
    • 18844438774 scopus 로고    scopus 로고
    • Formin proteins: a domain-based approach
    • Higgs HN. 2005. Formin proteins: a domain-based approach. Trends Biochem Sci 30: 342-53.
    • (2005) Trends Biochem Sci , vol.30 , pp. 342-353
    • Higgs, H.N.1
  • 17
    • 77649273530 scopus 로고    scopus 로고
    • Fifteen formins for an actin filament: a molecular view on the regulation of human formins
    • Schonichen A, Geyer M. 2010. Fifteen formins for an actin filament: a molecular view on the regulation of human formins. Biochim Biophys Acta 1803: 152-63.
    • (2010) Biochim Biophys Acta , vol.1803 , pp. 152-163
    • Schonichen, A.1    Geyer, M.2
  • 18
    • 9644278070 scopus 로고    scopus 로고
    • Homo-oligomerization is essential for F-actin assembly by the formin family FH2 domain
    • Copeland JW, Copeland SJ, Treisman R. 2004. Homo-oligomerization is essential for F-actin assembly by the formin family FH2 domain. J Biol Chem 279: 50250-6.
    • (2004) J Biol Chem , vol.279 , pp. 50250-50256
    • Copeland, J.W.1    Copeland, S.J.2    Treisman, R.3
  • 19
    • 1542285173 scopus 로고    scopus 로고
    • The core FH2 domain of diaphanous-related formins is an elongated actin binding protein that inhibits polymerization
    • Shimada A, Nyitrai M, Vetter IR, Kuhlmann D, et al. 2004. The core FH2 domain of diaphanous-related formins is an elongated actin binding protein that inhibits polymerization. Mol Cell 13: 511-22.
    • (2004) Mol Cell , vol.13 , pp. 511-522
    • Shimada, A.1    Nyitrai, M.2    Vetter, I.R.3    Kuhlmann, D.4
  • 20
    • 1542269073 scopus 로고    scopus 로고
    • Crystal structures of a formin homology-2 domain reveal a tethered dimer architecture
    • Xu Y, Moseley JB, Sagot I, Poy F, et al. 2004. Crystal structures of a formin homology-2 domain reveal a tethered dimer architecture. Cell 116: 711-23.
    • (2004) Cell , vol.116 , pp. 711-723
    • Xu, Y.1    Moseley, J.B.2    Sagot, I.3    Poy, F.4
  • 21
    • 34248665829 scopus 로고    scopus 로고
    • Structure of the FH2 domain of Daam1: implications for formin regulation of actin assembly
    • Lu J, Meng W, Poy F, Maiti S, et al. 2007. Structure of the FH2 domain of Daam1: implications for formin regulation of actin assembly. J Mol Biol 369: 1258-69.
    • (2007) J Mol Biol , vol.369 , pp. 1258-1269
    • Lu, J.1    Meng, W.2    Poy, F.3    Maiti, S.4
  • 23
    • 33646867122 scopus 로고    scopus 로고
    • Mechanistic differences in actin bundling activity of two mammalian formins, FRL1 and mDia2
    • Harris ES, Rouiller I, Hanein D, Higgs HN. 2006. Mechanistic differences in actin bundling activity of two mammalian formins, FRL1 and mDia2. J Biol Chem 281: 14383-92.
    • (2006) J Biol Chem , vol.281 , pp. 14383-14392
    • Harris, E.S.1    Rouiller, I.2    Hanein, D.3    Higgs, H.N.4
  • 24
    • 43149114446 scopus 로고    scopus 로고
    • The formin mDia2 stabilizes microtubules independently of its actin nucleation activity
    • Bartolini F, Moseley JB, Schmoranzer J, Cassimeris L, et al. 2008. The formin mDia2 stabilizes microtubules independently of its actin nucleation activity. J Cell Biol 181: 523-36.
    • (2008) J Cell Biol , vol.181 , pp. 523-536
    • Bartolini, F.1    Moseley, J.B.2    Schmoranzer, J.3    Cassimeris, L.4
  • 25
    • 80054714234 scopus 로고    scopus 로고
    • The functionally distinct fission yeast formins have specific actin-assembly properties
    • Scott BJ, Neidt EM, Kovar DR. 2011. The functionally distinct fission yeast formins have specific actin-assembly properties. Mol Biol Cell 22: 3826-39.
    • (2011) Mol Biol Cell , vol.22 , pp. 3826-3839
    • Scott, B.J.1    Neidt, E.M.2    Kovar, D.R.3
  • 26
    • 0035141074 scopus 로고    scopus 로고
    • Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1
    • Ishizaki T, Morishima Y, Okamoto M, Furuyashiki T, et al. 2001. Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nat Cell Biol 3: 8-14.
    • (2001) Nat Cell Biol , vol.3 , pp. 8-14
    • Ishizaki, T.1    Morishima, Y.2    Okamoto, M.3    Furuyashiki, T.4
  • 27
    • 84872043614 scopus 로고    scopus 로고
    • FMNL3 FH2-actin structure gives insight into formin-mediated actin nucleation and elongation
    • Thompson ME, Heimsath EG, Gauvin TJ, Higgs HN, et al. 2013. FMNL3 FH2-actin structure gives insight into formin-mediated actin nucleation and elongation. Nat Struct Mol Biol 20: 111-8.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 111-118
    • Thompson, M.E.1    Heimsath, E.G.2    Gauvin, T.J.3    Higgs, H.N.4
  • 28
    • 0037458002 scopus 로고    scopus 로고
    • Mechanism of formin-induced nucleation of actin filaments
    • Pring M, Evangelista M, Boone C, Yang C, et al. 2003. Mechanism of formin-induced nucleation of actin filaments. Biochemistry 42: 486-96.
    • (2003) Biochemistry , vol.42 , pp. 486-496
    • Pring, M.1    Evangelista, M.2    Boone, C.3    Yang, C.4
  • 29
    • 7044224754 scopus 로고    scopus 로고
    • Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis
    • Romero S, Le Clainche C, Didry D, Egile C, et al. 2004. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119: 419-29.
    • (2004) Cell , vol.119 , pp. 419-429
    • Romero, S.1    Le Clainche, C.2    Didry, D.3    Egile, C.4
  • 30
    • 1642361261 scopus 로고    scopus 로고
    • Actin polymerization-driven molecular movement of mDia1 in living cells
    • Higashida C, Miyoshi T, Fujita A, Oceguera-Yanez F, et al. 2004. Actin polymerization-driven molecular movement of mDia1 in living cells. Science 303: 2007-10.
    • (2004) Science , vol.303 , pp. 2007-2010
    • Higashida, C.1    Miyoshi, T.2    Fujita, A.3    Oceguera-Yanez, F.4
  • 31
    • 6944220067 scopus 로고    scopus 로고
    • Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces
    • Kovar DR, Pollard TD. 2004. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Proc Natl Acad Sci USA 101: 14725-30.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 14725-14730
    • Kovar, D.R.1    Pollard, T.D.2
  • 32
    • 78650988290 scopus 로고    scopus 로고
    • Rotational movement of the formin mDia1 along the double helical strand of an actin filament
    • Mizuno H, Higashida C, Yuan Y, Ishizaki T, et al. 2011. Rotational movement of the formin mDia1 along the double helical strand of an actin filament. Science 331: 80-3.
    • (2011) Science , vol.331 , pp. 80-83
    • Mizuno, H.1    Higashida, C.2    Yuan, Y.3    Ishizaki, T.4
  • 33
    • 0142136092 scopus 로고    scopus 로고
    • Formin leaky cap allows elongation in the presence of tight capping proteins
    • Zigmond SH, Evangelista M, Boone C, Yang C, et al. 2003. Formin leaky cap allows elongation in the presence of tight capping proteins. Curr Biol 13: 1820-3.
    • (2003) Curr Biol , vol.13 , pp. 1820-1823
    • Zigmond, S.H.1    Evangelista, M.2    Boone, C.3    Yang, C.4
  • 34
    • 24944560068 scopus 로고    scopus 로고
    • A novel mechanism of actin filament processive capping by formin: solution of the rotation paradox
    • Shemesh T, Otomo T, Rosen MK, Bershadsky AD, et al. 2005. A novel mechanism of actin filament processive capping by formin: solution of the rotation paradox. J Cell Biol 170: 889-93.
    • (2005) J Cell Biol , vol.170 , pp. 889-893
    • Shemesh, T.1    Otomo, T.2    Rosen, M.K.3    Bershadsky, A.D.4
  • 35
    • 67749135871 scopus 로고    scopus 로고
    • Review of the mechanism of processive actin filament elongation by formins
    • Paul AS, Pollard TD. 2009. Review of the mechanism of processive actin filament elongation by formins. Cell Motil Cytoskeleton 66: 606-17.
    • (2009) Cell Motil Cytoskeleton , vol.66 , pp. 606-617
    • Paul, A.S.1    Pollard, T.D.2
  • 36
    • 2442473140 scopus 로고    scopus 로고
    • The mouse formin, FRLalpha, slows actin filament barbed end elongation, competes with capping protein, accelerates polymerization from monomers, and severs filaments
    • Harris ES, Li F, Higgs HN. 2004. The mouse formin, FRLalpha, slows actin filament barbed end elongation, competes with capping protein, accelerates polymerization from monomers, and severs filaments. J Biol Chem 279: 20076-87.
    • (2004) J Biol Chem , vol.279 , pp. 20076-20087
    • Harris, E.S.1    Li, F.2    Higgs, H.N.3
  • 37
    • 84856279315 scopus 로고    scopus 로고
    • The C terminus of formin FMNL3 accelerates actin polymerization and contains a WH2 domain-like sequence that binds both monomers and filament barbed ends
    • Heimsath EG, Jr., Higgs HN. 2012. The C terminus of formin FMNL3 accelerates actin polymerization and contains a WH2 domain-like sequence that binds both monomers and filament barbed ends. J Biol Chem 287: 3087-98.
    • (2012) J Biol Chem , vol.287 , pp. 3087-3098
    • Heimsath Jr, E.G.1    Higgs, H.N.2
  • 38
    • 79952363769 scopus 로고    scopus 로고
    • The formin DAD domain plays dual roles in autoinhibition and actin nucleation
    • Gould CJ, Maiti S, Michelot A, Graziano BR, et al. 2011. The formin DAD domain plays dual roles in autoinhibition and actin nucleation. Curr Biol 21: 384-90.
    • (2011) Curr Biol , vol.21 , pp. 384-390
    • Gould, C.J.1    Maiti, S.2    Michelot, A.3    Graziano, B.R.4
  • 39
    • 57749105439 scopus 로고    scopus 로고
    • Interaction of the N- and C-terminal autoregulatory domains of FRL2 does not inhibit FRL2 activity
    • Vaillant DC, Copeland SJ, Davis C, Thurston SF, et al. 2008. Interaction of the N- and C-terminal autoregulatory domains of FRL2 does not inhibit FRL2 activity. J Biol Chem 283: 33750-62.
    • (2008) J Biol Chem , vol.283 , pp. 33750-33762
    • Vaillant, D.C.1    Copeland, S.J.2    Davis, C.3    Thurston, S.F.4
  • 40
    • 84892780734 scopus 로고    scopus 로고
    • INF2-mediated severing through actin filament encirclement and disruption
    • Gurel PS, Ge P, Grintsevich EE, Shu R, et al. 2014. INF2-mediated severing through actin filament encirclement and disruption. Curr Biol 24: 156-64.
    • (2014) Curr Biol , vol.24 , pp. 156-164
    • Gurel, P.S.1    Ge, P.2    Grintsevich, E.E.3    Shu, R.4
  • 41
    • 84867251545 scopus 로고    scopus 로고
    • Mutations to the formin homology 2 domain of INF2 protein have unexpected effects on actin polymerization and severing
    • Ramabhadran V, Gurel PS, Higgs HN. 2012. Mutations to the formin homology 2 domain of INF2 protein have unexpected effects on actin polymerization and severing. J Biol Chem 287: 34234-45.
    • (2012) J Biol Chem , vol.287 , pp. 34234-34245
    • Ramabhadran, V.1    Gurel, P.S.2    Higgs, H.N.3
  • 42
    • 84867477942 scopus 로고    scopus 로고
    • Actin-capping protein promotes microtubule stability by antagonizing the actin activity of mDia1
    • Bartolini F, Ramalingam N, Gundersen GG. 2012. Actin-capping protein promotes microtubule stability by antagonizing the actin activity of mDia1. Mol Biol Cell 23: 4032-40.
    • (2012) Mol Biol Cell , vol.23 , pp. 4032-4040
    • Bartolini, F.1    Ramalingam, N.2    Gundersen, G.G.3
  • 43
    • 84894115206 scopus 로고    scopus 로고
    • Interaction between microtubules and the Drosophila formin Cappuccino and its effect on actin assembly
    • Roth-Johnson EA, Vizcarra CL, Bois JS, Quinlan ME. 2014. Interaction between microtubules and the Drosophila formin Cappuccino and its effect on actin assembly. J Biol Chem 289: 4395-404.
    • (2014) J Biol Chem , vol.289 , pp. 4395-4404
    • Roth-Johnson, E.A.1    Vizcarra, C.L.2    Bois, J.S.3    Quinlan, M.E.4
  • 44
    • 82655181325 scopus 로고    scopus 로고
    • Differential interactions of the formins INF2, mDia1, and mDia2 with microtubules
    • Gaillard J, Ramabhadran V, Neumanne E, Gurel P, et al. 2011. Differential interactions of the formins INF2, mDia1, and mDia2 with microtubules. Mol Biol Cell 22: 4575-87.
    • (2011) Mol Biol Cell , vol.22 , pp. 4575-4587
    • Gaillard, J.1    Ramabhadran, V.2    Neumanne, E.3    Gurel, P.4
  • 46
    • 84868155872 scopus 로고    scopus 로고
    • The ability to induce microtubule acetylation is a general feature of formin proteins
    • Thurston SF, Kulacz WA, Shaikh S, Lee JM, et al. 2012. The ability to induce microtubule acetylation is a general feature of formin proteins. PLoS One 7: e48041.
    • (2012) PLoS One , vol.7
    • Thurston, S.F.1    Kulacz, W.A.2    Shaikh, S.3    Lee, J.M.4
  • 47
    • 35649017729 scopus 로고    scopus 로고
    • The diaphanous inhibitory domain/diaphanous autoregulatory domain interaction is able to mediate heterodimerization between mDia1 and mDia2
    • Copeland SJ, Green BJ, Burchat S, Papalia GA, et al. 2007. The diaphanous inhibitory domain/diaphanous autoregulatory domain interaction is able to mediate heterodimerization between mDia1 and mDia2. J Biol Chem 282: 30120-30.
    • (2007) J Biol Chem , vol.282 , pp. 30120-30130
    • Copeland, S.J.1    Green, B.J.2    Burchat, S.3    Papalia, G.A.4
  • 48
    • 84862731987 scopus 로고    scopus 로고
    • Structure and activity of full-length formin mDia1
    • Maiti S, Michelot A, Gould C, Blanchoin L, et al. 2012. Structure and activity of full-length formin mDia1. Cytoskeleton 69: 393-405.
    • (2012) Cytoskeleton , vol.69 , pp. 393-405
    • Maiti, S.1    Michelot, A.2    Gould, C.3    Blanchoin, L.4
  • 49
    • 77958582305 scopus 로고    scopus 로고
    • Crystal structure of a complex between amino and carboxy terminal fragments of mDia1: insights into autoinhibition of diaphanous-related formins
    • Nezami A, Poy F, Toms A, Zheng W, et al. 2010. Crystal structure of a complex between amino and carboxy terminal fragments of mDia1: insights into autoinhibition of diaphanous-related formins. PLoS One 5: e12992.
    • (2010) PLoS One , vol.5
    • Nezami, A.1    Poy, F.2    Toms, A.3    Zheng, W.4
  • 50
    • 0035951824 scopus 로고    scopus 로고
    • Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain
    • Alberts AS. 2001. Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J Biol Chem 276: 2824-30.
    • (2001) J Biol Chem , vol.276 , pp. 2824-2830
    • Alberts, A.S.1
  • 51
    • 0043202969 scopus 로고    scopus 로고
    • The mouse Formin mDia1 is a potent actin nucleation factor regulated by autoinhibition
    • Li F, Higgs HN. 2003. The mouse Formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr Biol 13: 1335-40.
    • (2003) Curr Biol , vol.13 , pp. 1335-1340
    • Li, F.1    Higgs, H.N.2
  • 52
    • 1342310742 scopus 로고    scopus 로고
    • Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables
    • Kobielak A, Pasolli HA, Fuchs E. 2004. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol 6: 21-30.
    • (2004) Nat Cell Biol , vol.6 , pp. 21-30
    • Kobielak, A.1    Pasolli, H.A.2    Fuchs, E.3
  • 53
    • 84884199224 scopus 로고    scopus 로고
    • Actin monomers activate inverted formin 2 by competing with its autoinhibitory interaction
    • Ramabhadran V, Hatch AL, Higgs HN. 2013. Actin monomers activate inverted formin 2 by competing with its autoinhibitory interaction. J Biol Chem 288: 26847-55.
    • (2013) J Biol Chem , vol.288 , pp. 26847-26855
    • Ramabhadran, V.1    Hatch, A.L.2    Higgs, H.N.3
  • 54
    • 35349021033 scopus 로고    scopus 로고
    • Regulatory interactions between two actin nucleators, Spire and Cappuccino
    • Quinlan ME, Hilgert S, Bedrossian A, Mullins RD, et al. 2007. Regulatory interactions between two actin nucleators, Spire and Cappuccino. J Cell Biol 179: 117-28.
    • (2007) J Cell Biol , vol.179 , pp. 117-128
    • Quinlan, M.E.1    Hilgert, S.2    Bedrossian, A.3    Mullins, R.D.4
  • 55
    • 20844439387 scopus 로고    scopus 로고
    • Structural basis of Rho GTPase-mediated activation of the formin mDia1
    • Otomo T, Otomo C, Tomchick DR, Machius M, et al. 2005. Structural basis of Rho GTPase-mediated activation of the formin mDia1. Mol Cell 18: 273-81.
    • (2005) Mol Cell , vol.18 , pp. 273-281
    • Otomo, T.1    Otomo, C.2    Tomchick, D.R.3    Machius, M.4
  • 56
    • 14844288286 scopus 로고    scopus 로고
    • Dissecting requirements for auto-inhibition of actin nucleation by the formin, mDia1
    • Li F, Higgs HN. 2005. Dissecting requirements for auto-inhibition of actin nucleation by the formin, mDia1. J Biol Chem 280: 6986-92.
    • (2005) J Biol Chem , vol.280 , pp. 6986-6992
    • Li, F.1    Higgs, H.N.2
  • 57
    • 32044470440 scopus 로고    scopus 로고
    • Structure of the autoinhibitory switch in formin mDia1
    • Nezami AG, Poy F, Eck MJ. 2006. Structure of the autoinhibitory switch in formin mDia1. Structure 14: 257-63.
    • (2006) Structure , vol.14 , pp. 257-263
    • Nezami, A.G.1    Poy, F.2    Eck, M.J.3
  • 58
    • 19544386803 scopus 로고    scopus 로고
    • Structural and mechanistic insights into the interaction between Rho and mammalian Dia
    • Rose R, Weyand M, Lammers M, Ishizaki T, et al. 2005. Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 435: 513-8.
    • (2005) Nature , vol.435 , pp. 513-518
    • Rose, R.1    Weyand, M.2    Lammers, M.3    Ishizaki, T.4
  • 59
    • 0141866726 scopus 로고    scopus 로고
    • Activation of the Rac-binding partner FHOD1 induces actin stress fibers via a ROCK-dependent mechanism
    • Gasteier JE, Madrid R, Krautkramer E, Schroder S, et al. 2003. Activation of the Rac-binding partner FHOD1 induces actin stress fibers via a ROCK-dependent mechanism. J Biol Chem 278: 38902-12.
    • (2003) J Biol Chem , vol.278 , pp. 38902-38912
    • Gasteier, J.E.1    Madrid, R.2    Krautkramer, E.3    Schroder, S.4
  • 60
    • 39449085061 scopus 로고    scopus 로고
    • The mammalian formin FHOD1 is activated through phosphorylation by ROCK and mediates thrombin-induced stress fibre formation in endothelial cells
    • Takeya R, Taniguchi K, Narumiya S, Sumimoto H. 2008. The mammalian formin FHOD1 is activated through phosphorylation by ROCK and mediates thrombin-induced stress fibre formation in endothelial cells. EMBO J 27: 618-28.
    • (2008) EMBO J , vol.27 , pp. 618-628
    • Takeya, R.1    Taniguchi, K.2    Narumiya, S.3    Sumimoto, H.4
  • 61
    • 80052734907 scopus 로고    scopus 로고
    • Enhancement of mDia2 activity by Rho-kinase-dependent phosphorylation of the diaphanous autoregulatory domain
    • Staus DP, Taylor JM, Mack CP. 2011. Enhancement of mDia2 activity by Rho-kinase-dependent phosphorylation of the diaphanous autoregulatory domain. Biochem J 439: 57-65.
    • (2011) Biochem J , vol.439 , pp. 57-65
    • Staus, D.P.1    Taylor, J.M.2    Mack, C.P.3
  • 62
    • 84887617746 scopus 로고    scopus 로고
    • Formin-mediated actin polymerization promotes Salmonella invasion
    • Truong D, Brabant D, Bashkurov M, Wan LC, et al. 2013. Formin-mediated actin polymerization promotes Salmonella invasion. Cell Microbiol 15: 2051-63.
    • (2013) Cell Microbiol , vol.15 , pp. 2051-2063
    • Truong, D.1    Brabant, D.2    Bashkurov, M.3    Wan, L.C.4
  • 63
    • 2642514777 scopus 로고    scopus 로고
    • Formin homology domain protein (FHOD1) is a cyclic GMP-dependent protein kinase I-binding protein and substrate in vascular smooth muscle cells
    • Wang Y, El-Zaru MR, Surks HK, Mendelsohn ME. 2004. Formin homology domain protein (FHOD1) is a cyclic GMP-dependent protein kinase I-binding protein and substrate in vascular smooth muscle cells. J Biol Chem 279: 24420-6.
    • (2004) J Biol Chem , vol.279 , pp. 24420-24426
    • Wang, Y.1    El-Zaru, M.R.2    Surks, H.K.3    Mendelsohn, M.E.4
  • 64
    • 78650078032 scopus 로고    scopus 로고
    • Formin follows function: a muscle-specific isoform of FHOD3 is regulated by CK2 phosphorylation and promotes myofibril maintenance
    • Iskratsch T, Lange S, Dwyer J, Kho AL, et al. 2010. Formin follows function: a muscle-specific isoform of FHOD3 is regulated by CK2 phosphorylation and promotes myofibril maintenance. J Cell Biol 191: 1159-72.
    • (2010) J Cell Biol , vol.191 , pp. 1159-1172
    • Iskratsch, T.1    Lange, S.2    Dwyer, J.3    Kho, A.L.4
  • 65
    • 79952523494 scopus 로고    scopus 로고
    • Aurora B regulates formin mDia3 in achieving metaphase chromosome alignment
    • Cheng L, Zhang J, Ahmad S, Rozier L, et al. 2011. Aurora B regulates formin mDia3 in achieving metaphase chromosome alignment. Dev Cell 20: 342-52.
    • (2011) Dev Cell , vol.20 , pp. 342-352
    • Cheng, L.1    Zhang, J.2    Ahmad, S.3    Rozier, L.4
  • 66
    • 78751536310 scopus 로고    scopus 로고
    • Mechanisms of plasma membrane targeting of formin mDia2 through its amino terminal domains
    • Gorelik R, Yang C, Kameswaran V, Dominguez R, et al. 2011. Mechanisms of plasma membrane targeting of formin mDia2 through its amino terminal domains. Mol Biol Cell 22: 189-201.
    • (2011) Mol Biol Cell , vol.22 , pp. 189-201
    • Gorelik, R.1    Yang, C.2    Kameswaran, V.3    Dominguez, R.4
  • 67
    • 33748123994 scopus 로고    scopus 로고
    • Autoinhibition regulates cellular localization and actin assembly activity of the diaphanous-related formins FRLalpha and mDia1
    • Seth A, Otomo C, Rosen MK. 2006. Autoinhibition regulates cellular localization and actin assembly activity of the diaphanous-related formins FRLalpha and mDia1. J Cell Biol 174: 701-13.
    • (2006) J Cell Biol , vol.174 , pp. 701-713
    • Seth, A.1    Otomo, C.2    Rosen, M.K.3
  • 68
    • 84861851966 scopus 로고    scopus 로고
    • FMNL2 drives actin-based protrusion and migration downstream of Cdc42
    • Block J, Breitsprecher D, Kuhn S, Winterhoff M, et al. 2012. FMNL2 drives actin-based protrusion and migration downstream of Cdc42. Curr Biol 22: 1005-12.
    • (2012) Curr Biol , vol.22 , pp. 1005-1012
    • Block, J.1    Breitsprecher, D.2    Kuhn, S.3    Winterhoff, M.4
  • 69
    • 70450225326 scopus 로고    scopus 로고
    • Formin-like 1 (FMNL1) is regulated by N-terminal myristoylation and induces polarized membrane blebbing
    • Han Y, Eppinger E, Schuster IG, Weigand LU, et al. 2009. Formin-like 1 (FMNL1) is regulated by N-terminal myristoylation and induces polarized membrane blebbing. J Biol Chem 284: 33409-17.
    • (2009) J Biol Chem , vol.284 , pp. 33409-33417
    • Han, Y.1    Eppinger, E.2    Schuster, I.G.3    Weigand, L.U.4
  • 70
    • 84862746879 scopus 로고    scopus 로고
    • Protein N-myristoylation is required for cellular morphological changes induced by two formin family proteins, FMNL2 and FMNL3
    • Moriya K, Yamamoto T, Takamitsu E, Matsunaga Y, et al. 2012. Protein N-myristoylation is required for cellular morphological changes induced by two formin family proteins, FMNL2 and FMNL3. Biosci Biotechnol Biochem 76: 1201-9.
    • (2012) Biosci Biotechnol Biochem , vol.76 , pp. 1201-1209
    • Moriya, K.1    Yamamoto, T.2    Takamitsu, E.3    Matsunaga, Y.4
  • 71
    • 84878722228 scopus 로고    scopus 로고
    • Formin mDia1 senses and generates mechanical forces on actin filaments
    • Jegou A, Carlier MF, Romet-Lemonne G. 2013. Formin mDia1 senses and generates mechanical forces on actin filaments. Nat Commun 4: 1883.
    • (2013) Nat Commun , vol.4 , pp. 1883
    • Jegou, A.1    Carlier, M.F.2    Romet-Lemonne, G.3
  • 72
    • 84878982264 scopus 로고    scopus 로고
    • Tension modulates actin filament polymerization mediated by formin and profilin
    • Courtemanche N, Lee JY, Pollard TD, Greene EC. 2013. Tension modulates actin filament polymerization mediated by formin and profilin. Proc Natl Acad Sci USA 110: 9752-7.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 9752-9757
    • Courtemanche, N.1    Lee, J.Y.2    Pollard, T.D.3    Greene, E.C.4
  • 73
    • 77950550875 scopus 로고    scopus 로고
    • Force-induced myofibroblast differentiation through collagen receptors is dependent on mammalian diaphanous (mDia)
    • Chan MW, Chaudary F, Lee W, Copeland JW, et al. 2010. Force-induced myofibroblast differentiation through collagen receptors is dependent on mammalian diaphanous (mDia). J Biol Chem 285: 9273-81.
    • (2010) J Biol Chem , vol.285 , pp. 9273-9281
    • Chan, M.W.1    Chaudary, F.2    Lee, W.3    Copeland, J.W.4
  • 74
    • 84876487528 scopus 로고    scopus 로고
    • F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins
    • Higashida C, Kiuchi T, Akiba Y, Mizuno H, et al. 2013. F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins. Nat Cell Biol 15: 395-405.
    • (2013) Nat Cell Biol , vol.15 , pp. 395-405
    • Higashida, C.1    Kiuchi, T.2    Akiba, Y.3    Mizuno, H.4
  • 75
    • 0033160196 scopus 로고    scopus 로고
    • Cooperation between mDia1 and ROCK in Rho-induced actin reorganization
    • Watanabe N, Kato T, Fujita A, Ishizaki T, et al. 1999. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1: 136-43.
    • (1999) Nat Cell Biol , vol.1 , pp. 136-143
    • Watanabe, N.1    Kato, T.2    Fujita, A.3    Ishizaki, T.4
  • 76
    • 33646386142 scopus 로고    scopus 로고
    • Stress fibers are generated by two distinct actin assembly mechanisms in motile cells
    • Hotulainen P, Lappalainen P. 2006. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J Cell Biol 173: 383-94.
    • (2006) J Cell Biol , vol.173 , pp. 383-394
    • Hotulainen, P.1    Lappalainen, P.2
  • 77
    • 84859387007 scopus 로고    scopus 로고
    • Tension is required but not sufficient for focal adhesion maturation without a stress fiber template
    • Oakes PW, Beckham Y, Stricker J, Gardel ML. 2012. Tension is required but not sufficient for focal adhesion maturation without a stress fiber template. J Cell Biol 196: 363-74.
    • (2012) J Cell Biol , vol.196 , pp. 363-374
    • Oakes, P.W.1    Beckham, Y.2    Stricker, J.3    Gardel, M.L.4
  • 78
    • 84897467341 scopus 로고    scopus 로고
    • FHOD1 regulates stress fiber organization by controlling transversal arc and dorsal fiber dynamics
    • Schulze N, Graessl M, Blancke Soares A, Geyer M, et al. 2014. FHOD1 regulates stress fiber organization by controlling transversal arc and dorsal fiber dynamics. J Cell Sci 127: 1379-93.
    • (2014) J Cell Sci , vol.127 , pp. 1379-1393
    • Schulze, N.1    Graessl, M.2    Blancke Soares, A.3    Geyer, M.4
  • 79
    • 36249032075 scopus 로고    scopus 로고
    • Analysis of the function of Spire in actin assembly and its synergy with formin and profilin
    • Bosch M, Le KH, Bugyi B, Correia JJ, et al. 2007. Analysis of the function of Spire in actin assembly and its synergy with formin and profilin. Mol Cell 28: 555-68.
    • (2007) Mol Cell , vol.28 , pp. 555-568
    • Bosch, M.1    Le, K.H.2    Bugyi, B.3    Correia, J.J.4
  • 80
    • 79958075131 scopus 로고    scopus 로고
    • Spire-type actin nucleators cooperate with Formin-2 to drive asymmetric oocyte division
    • Pfender S, Kuznetsov V, Pleiser S, Kerkhoff E, et al. 2011. Spire-type actin nucleators cooperate with Formin-2 to drive asymmetric oocyte division. Curr Biol 21: 955-60.
    • (2011) Curr Biol , vol.21 , pp. 955-960
    • Pfender, S.1    Kuznetsov, V.2    Pleiser, S.3    Kerkhoff, E.4
  • 81
    • 77954422924 scopus 로고    scopus 로고
    • Adenomatous polyposis coli protein nucleates actin assembly and synergizes with the formin mDia1
    • Okada K, Bartolini F, Deaconescu AM, Moseley JB, et al. 2010. Adenomatous polyposis coli protein nucleates actin assembly and synergizes with the formin mDia1. J Cell Biol 189: 1087-96.
    • (2010) J Cell Biol , vol.189 , pp. 1087-1096
    • Okada, K.1    Bartolini, F.2    Deaconescu, A.M.3    Moseley, J.B.4
  • 82
    • 46449098660 scopus 로고    scopus 로고
    • WAVE and Arp2/3 jointly inhibit filopodium formation by entering into a complex with mDia2
    • Beli P, Mascheroni D, Xu D, Innocenti M. 2008. WAVE and Arp2/3 jointly inhibit filopodium formation by entering into a complex with mDia2. Nat Cell Biol 10: 849-57.
    • (2008) Nat Cell Biol , vol.10 , pp. 849-857
    • Beli, P.1    Mascheroni, D.2    Xu, D.3    Innocenti, M.4
  • 83
    • 41549124089 scopus 로고    scopus 로고
    • WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells
    • Sarmiento C, Wang W, Dovas A, Yamaguchi H, et al. 2008. WASP family members and formin proteins coordinate regulation of cell protrusions in carcinoma cells. J Cell Biol 180: 1245-60.
    • (2008) J Cell Biol , vol.180 , pp. 1245-1260
    • Sarmiento, C.1    Wang, W.2    Dovas, A.3    Yamaguchi, H.4
  • 84
    • 84861926483 scopus 로고    scopus 로고
    • The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration
    • Suraneni P, Rubinstein B, Unruh JR, Durnin M, et al. 2012. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J Cell Biol 197: 239-51.
    • (2012) J Cell Biol , vol.197 , pp. 239-251
    • Suraneni, P.1    Rubinstein, B.2    Unruh, J.R.3    Durnin, M.4
  • 85
    • 79953794528 scopus 로고    scopus 로고
    • A molecular pathway for myosin II recruitment to stress fibers
    • Tojkander S, Gateva G, Schevzov G, Hotulainen P, et al. 2011. A molecular pathway for myosin II recruitment to stress fibers. Curr Biol 21: 539-50.
    • (2011) Curr Biol , vol.21 , pp. 539-550
    • Tojkander, S.1    Gateva, G.2    Schevzov, G.3    Hotulainen, P.4
  • 86
    • 77956537388 scopus 로고    scopus 로고
    • Self-assembly of filopodia-like structures on supported lipid bilayers
    • Lee K, Gallop JL, Rambani K, Kirschner MW. 2010. Self-assembly of filopodia-like structures on supported lipid bilayers. Science 329: 1341-5.
    • (2010) Science , vol.329 , pp. 1341-1345
    • Lee, K.1    Gallop, J.L.2    Rambani, K.3    Kirschner, M.W.4
  • 87
    • 37249003725 scopus 로고    scopus 로고
    • Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells
    • Yang C, Czech L, Gerboth S, Kojima S, et al. 2007. Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLoS Biol 5: e317.
    • (2007) PLoS Biol , vol.5
    • Yang, C.1    Czech, L.2    Gerboth, S.3    Kojima, S.4
  • 89
    • 0031021153 scopus 로고    scopus 로고
    • Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes
    • Welch MD, Iwamatsu A, Mitchison TJ. 1997. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385: 265-9.
    • (1997) Nature , vol.385 , pp. 265-269
    • Welch, M.D.1    Iwamatsu, A.2    Mitchison, T.J.3
  • 90
    • 0032479578 scopus 로고    scopus 로고
    • Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation
    • Welch MD, Rosenblatt J, Skoble J, Portnoy DA, et al. 1998. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281: 105-8.
    • (1998) Science , vol.281 , pp. 105-108
    • Welch, M.D.1    Rosenblatt, J.2    Skoble, J.3    Portnoy, D.A.4
  • 91
    • 0026515440 scopus 로고
    • L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein
    • Kocks C, Gouin E, Tabouret M, Berche P, et al. 1992. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68: 521-31.
    • (1992) Cell , vol.68 , pp. 521-531
    • Kocks, C.1    Gouin, E.2    Tabouret, M.3    Berche, P.4
  • 92
    • 0032562678 scopus 로고    scopus 로고
    • Supramolecular structure of the Salmonella typhimurium type III protein secretion system
    • Kubori T, Matsushima Y, Nakamura D, Uralil J, et al. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280: 602-5.
    • (1998) Science , vol.280 , pp. 602-605
    • Kubori, T.1    Matsushima, Y.2    Nakamura, D.3    Uralil, J.4
  • 93
    • 0025852616 scopus 로고
    • Cytoskeletal rearrangements accompanying salmonella entry into epithelial cells
    • Finlay BB, Ruschkowski S, Dedhar S. 1991. Cytoskeletal rearrangements accompanying salmonella entry into epithelial cells. J Cell Sci 99(Pt 2): 283-96.
    • (1991) J Cell Sci , vol.99 , Issue.PART 2 , pp. 283-296
    • Finlay, B.B.1    Ruschkowski, S.2    Dedhar, S.3
  • 94
    • 33750724697 scopus 로고    scopus 로고
    • Differential activation and function of Rho GTPases during Salmonella-host cell interactions
    • Patel JC, Galan JE. 2006. Differential activation and function of Rho GTPases during Salmonella-host cell interactions. J Cell Biol 175: 453-63.
    • (2006) J Cell Biol , vol.175 , pp. 453-463
    • Patel, J.C.1    Galan, J.E.2
  • 95
    • 0035147455 scopus 로고    scopus 로고
    • A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization
    • Zhou D, Chen LM, Hernandez L, Shears SB, et al. 2001. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol Microbiol 39: 248-59.
    • (2001) Mol Microbiol , vol.39 , pp. 248-259
    • Zhou, D.1    Chen, L.M.2    Hernandez, L.3    Shears, S.B.4
  • 96
    • 0033923731 scopus 로고    scopus 로고
    • Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell
    • Stender S, Friebel A, Linder S, Rohde M, et al. 2000. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol Microbiol 36: 1206-21.
    • (2000) Mol Microbiol , vol.36 , pp. 1206-1221
    • Stender, S.1    Friebel, A.2    Linder, S.3    Rohde, M.4
  • 97
    • 0032577563 scopus 로고    scopus 로고
    • S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells
    • Hardt WD, Chen LM, Schuebel KE, Bustelo XR, et al. 1998. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93: 815-26.
    • (1998) Cell , vol.93 , pp. 815-826
    • Hardt, W.D.1    Chen, L.M.2    Schuebel, K.E.3    Bustelo, X.R.4
  • 98
    • 78049296901 scopus 로고    scopus 로고
    • WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond
    • Rottner K, Hanisch J, Campellone KG. WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond. Trends Cell Biol 20: 650-61.
    • Trends Cell Biol , vol.20 , pp. 650-661
    • Rottner, K.1    Hanisch, J.2    Campellone, K.G.3
  • 99
    • 84855900042 scopus 로고    scopus 로고
    • Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes
    • Radolf JD, Caimano MJ, Stevenson B, Hu LT. 2012. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10: 87-99.
    • (2012) Nat Rev Microbiol , vol.10 , pp. 87-99
    • Radolf, J.D.1    Caimano, M.J.2    Stevenson, B.3    Hu, L.T.4
  • 100
    • 0035115283 scopus 로고    scopus 로고
    • Coiling phagocytosis of Borrelia burgdorferi by primary human macrophages is controlled by CDC42Hs and Rac1 and involves recruitment of Wiskott-Aldrich syndrome protein and Arp2/3 complex
    • Linder S, Heimerl C, Fingerle V, Aepfelbacher M, et al. 2001. Coiling phagocytosis of Borrelia burgdorferi by primary human macrophages is controlled by CDC42Hs and Rac1 and involves recruitment of Wiskott-Aldrich syndrome protein and Arp2/3 complex. Infect Immun 69: 1739-46.
    • (2001) Infect Immun , vol.69 , pp. 1739-1746
    • Linder, S.1    Heimerl, C.2    Fingerle, V.3    Aepfelbacher, M.4
  • 101
    • 84877826016 scopus 로고    scopus 로고
    • The formins FMNL1 and mDia1 regulate coiling phagocytosis of Borrelia burgdorferi by primary human macrophages
    • Naj X, Hoffmann AK, Himmel M, Linder S. 2013. The formins FMNL1 and mDia1 regulate coiling phagocytosis of Borrelia burgdorferi by primary human macrophages. Infect Immun 81: 1683-95.
    • (2013) Infect Immun , vol.81 , pp. 1683-1695
    • Naj, X.1    Hoffmann, A.K.2    Himmel, M.3    Linder, S.4
  • 102
    • 0021346850 scopus 로고
    • Phagocytosis of the Legionnaires' disease bacterium (Legionella pneumophila) occurs by a novel mechanism: engulfment within a pseudopod coil
    • Horwitz MA. 1984. Phagocytosis of the Legionnaires' disease bacterium (Legionella pneumophila) occurs by a novel mechanism: engulfment within a pseudopod coil. Cell 36: 27-33.
    • (1984) Cell , vol.36 , pp. 27-33
    • Horwitz, M.A.1
  • 103
    • 77649250020 scopus 로고    scopus 로고
    • A novel pseudopodial component of the dendritic cell anti-fungal response: the fungipod
    • Neumann AK, Jacobson K. 2010. A novel pseudopodial component of the dendritic cell anti-fungal response: the fungipod. PLoS Pathog 6: e1000760.
    • (2010) PLoS Pathog , vol.6
    • Neumann, A.K.1    Jacobson, K.2
  • 104
    • 0033055077 scopus 로고    scopus 로고
    • A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii
    • Gouin E, Gantelet H, Egile C, Lasa I, et al. 1999. A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J Cell Sci 112(Pt 11): 1697-708.
    • (1999) J Cell Sci , vol.112 , Issue.PART 11 , pp. 1697-1708
    • Gouin, E.1    Gantelet, H.2    Egile, C.3    Lasa, I.4
  • 105
    • 38549126641 scopus 로고    scopus 로고
    • Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion
    • Schroeder GN, Hilbi H. 2008. Molecular pathogenesis of Shigella spp.: controlling host cell signaling, invasion, and death by type III secretion. Clin Microbiol Rev 21: 134-56.
    • (2008) Clin Microbiol Rev , vol.21 , pp. 134-156
    • Schroeder, G.N.1    Hilbi, H.2
  • 106
    • 0033588990 scopus 로고    scopus 로고
    • Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility
    • Egile C, Loisel TP, Laurent V, Li R, et al. 1999. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell Biol 146: 1319-32.
    • (1999) J Cell Biol , vol.146 , pp. 1319-1332
    • Egile, C.1    Loisel, T.P.2    Laurent, V.3    Li, R.4
  • 107
    • 0026095008 scopus 로고
    • Intercellular spread of Shigella flexneri through a monolayer mediated by membranous protrusions and associated with reorganization of the cytoskeletal protein vinculin
    • Kadurugamuwa JL, Rohde M, Wehland J, Timmis KN. 1991. Intercellular spread of Shigella flexneri through a monolayer mediated by membranous protrusions and associated with reorganization of the cytoskeletal protein vinculin. Infect Immun 59: 3463-71.
    • (1991) Infect Immun , vol.59 , pp. 3463-3471
    • Kadurugamuwa, J.L.1    Rohde, M.2    Wehland, J.3    Timmis, K.N.4
  • 108
    • 73449146304 scopus 로고    scopus 로고
    • Requirement for formin-induced actin polymerization during spread of Shigella flexneri
    • Heindl JE, Saran I, Yi CR, Lesser CF, et al. 2010. Requirement for formin-induced actin polymerization during spread of Shigella flexneri. Infect Immun 78: 193-203.
    • (2010) Infect Immun , vol.78 , pp. 193-203
    • Heindl, J.E.1    Saran, I.2    Yi, C.R.3    Lesser, C.F.4
  • 109
    • 0030911424 scopus 로고    scopus 로고
    • p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin
    • Watanabe N, Madaule P, Reid T, Ishizaki T, et al. 1997. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J 16: 3044-56.
    • (1997) EMBO J , vol.16 , pp. 3044-3056
    • Watanabe, N.1    Madaule, P.2    Reid, T.3    Ishizaki, T.4
  • 110
    • 0842263990 scopus 로고    scopus 로고
    • The RickA protein of Rickettsia conorii activates the Arp2/3 complex
    • Gouin E, Egile C, Dehoux P, Villiers V, et al. 2004. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427: 457-61.
    • (2004) Nature , vol.427 , pp. 457-461
    • Gouin, E.1    Egile, C.2    Dehoux, P.3    Villiers, V.4
  • 111
    • 4043176919 scopus 로고    scopus 로고
    • A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility
    • Jeng RL, Goley ED, D'Alessio JA, Chaga OY, et al. 2004. A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell Microbiol 6: 761-9.
    • (2004) Cell Microbiol , vol.6 , pp. 761-769
    • Jeng, R.L.1    Goley, E.D.2    D'Alessio, J.A.3    Chaga, O.Y.4
  • 112
    • 0037372690 scopus 로고    scopus 로고
    • Effects of ectopically expressed neuronal Wiskott-Aldrich syndrome protein domains on Rickettsia rickettsii actin-based motility
    • Harlander RS, Way M, Ren Q, Howe D, et al. 2003. Effects of ectopically expressed neuronal Wiskott-Aldrich syndrome protein domains on Rickettsia rickettsii actin-based motility. Infect Immun 71: 1551-6.
    • (2003) Infect Immun , vol.71 , pp. 1551-1556
    • Harlander, R.S.1    Way, M.2    Ren, Q.3    Howe, D.4
  • 113
    • 77955284566 scopus 로고    scopus 로고
    • Defining a core set of actin cytoskeletal proteins critical for actin-based motility of Rickettsia
    • Serio AW, Jeng RL, Haglund CM, Reed SC, et al. 2010. Defining a core set of actin cytoskeletal proteins critical for actin-based motility of Rickettsia. Cell Host Microbe 7: 388-98.
    • (2010) Cell Host Microbe , vol.7 , pp. 388-398
    • Serio, A.W.1    Jeng, R.L.2    Haglund, C.M.3    Reed, S.C.4
  • 114
    • 0033914895 scopus 로고    scopus 로고
    • Ultrastructure of Rickettsia rickettsii actin tails and localization of cytoskeletal proteins
    • Van Kirk LS, Hayes SF, Heinzen RA. 2000. Ultrastructure of Rickettsia rickettsii actin tails and localization of cytoskeletal proteins. Infect Immun 68: 4706-13.
    • (2000) Infect Immun , vol.68 , pp. 4706-4713
    • Van Kirk, L.S.1    Hayes, S.F.2    Heinzen, R.A.3
  • 115
    • 24744458189 scopus 로고    scopus 로고
    • Molecular evolution of rickettsia surface antigens: evidence of positive selection
    • Blanc G, Ngwamidiba M, Ogata H, Fournier PE, et al. 2005. Molecular evolution of rickettsia surface antigens: evidence of positive selection. Mol Biol Evol 22: 2073-83.
    • (2005) Mol Biol Evol , vol.22 , pp. 2073-2083
    • Blanc, G.1    Ngwamidiba, M.2    Ogata, H.3    Fournier, P.E.4
  • 116
    • 78149285594 scopus 로고    scopus 로고
    • Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility
    • Haglund CM, Choe JE, Skau CT, Kovar DR, et al. 2010. Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat Cell Biol 12: 1057-63.
    • (2010) Nat Cell Biol , vol.12 , pp. 1057-1063
    • Haglund, C.M.1    Choe, J.E.2    Skau, C.T.3    Kovar, D.R.4
  • 117
    • 77951232931 scopus 로고    scopus 로고
    • Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility
    • Kleba B, Clark TR, Lutter EI, Ellison DW, et al. 2010. Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility. Infect Immun 78: 2240-7.
    • (2010) Infect Immun , vol.78 , pp. 2240-2247
    • Kleba, B.1    Clark, T.R.2    Lutter, E.I.3    Ellison, D.W.4
  • 118
    • 84880379936 scopus 로고    scopus 로고
    • Rickettsia Sca2 has evolved formin-like activity through a different molecular mechanism
    • Madasu Y, Suarez C, Kast DJ, Kovar DR, et al. 2013. Rickettsia Sca2 has evolved formin-like activity through a different molecular mechanism. Proc Natl Acad Sci USA 110: E2677-86.
    • (2013) Proc Natl Acad Sci USA , vol.110
    • Madasu, Y.1    Suarez, C.2    Kast, D.J.3    Kovar, D.R.4
  • 119
    • 84891832920 scopus 로고    scopus 로고
    • Rickettsia actin-based motility occurs in distinct phases mediated by different actin nucleators
    • Reed SC, Lamason RL, Risca VI, Abernathy E, et al. 2014. Rickettsia actin-based motility occurs in distinct phases mediated by different actin nucleators. Curr Biol 24: 98-103.
    • (2014) Curr Biol , vol.24 , pp. 98-103
    • Reed, S.C.1    Lamason, R.L.2    Risca, V.I.3    Abernathy, E.4
  • 120
    • 84886905045 scopus 로고    scopus 로고
    • The formin FHOD1 and the small GTPase Rac1 promote vaccinia virus actin-based motility
    • Alvarez DE, Agaisse H. 2013. The formin FHOD1 and the small GTPase Rac1 promote vaccinia virus actin-based motility. J Cell Biol 202: 1075-90.
    • (2013) J Cell Biol , vol.202 , pp. 1075-1090
    • Alvarez, D.E.1    Agaisse, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.