메뉴 건너뛰기




Volumn 29, Issue 3, 2014, Pages 408-422

Harnessing the power of GPUs to speed up feature selection for outlier detection

Author keywords

feature selection; GPU acceleration; imbalanced data; outlier detection

Indexed keywords

ALGORITHMS; COMPUTER GRAPHICS; COMPUTER GRAPHICS EQUIPMENT; FEATURE EXTRACTION; PROGRAM PROCESSORS;

EID: 84901682270     PISSN: 10009000     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11390-014-1439-4     Document Type: Conference Paper
Times cited : (10)

References (32)
  • 1
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • 10.1162/089976698300017467
    • Schölkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5): 1299-1319.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.R.3
  • 2
    • 85146422424 scopus 로고
    • A practical approach to feature selection
    • July
    • Kira K, Rendell L A. A practical approach to feature selection. In Proc. The 9th ICML, July 1992, pp.249-256.
    • (1992) Proc. The 9th ICML , pp. 249-256
    • Kira, K.1    Rendell, L.A.2
  • 4
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • Kohavi R, John G H. Wrappers for feature subset selection. Artificial Intelligence, 1997, 97(1/2): 273-324. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 5
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • 10.1016/S1088-467X(97)00008-5
    • Dash M, Liu H. Feature selection for classification. Intelligent Data Analysis, 1997, 1(1/4): 131-156.
    • (1997) Intelligent Data Analysis , vol.1 , Issue.14 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 6
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • 1102.68556
    • Guyon I, Elisseeff A. An introduction to variable and feature selection. J. Machine Learning Research, 2003, 3: 1157-1182.
    • (2003) J. Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 8
    • 84874042969 scopus 로고    scopus 로고
    • GPU-accelerated feature selection for outlier detection using the local kernel density ratio
    • December
    • Azmandian F, Yilmazer A, Dy J et al. GPU-accelerated feature selection for outlier detection using the local kernel density ratio. In Proc. The 12th ICDM, December 2012, pp.51-60.
    • (2012) Proc. The 12th ICDM , pp. 51-60
    • Azmandian, F.1    Yilmazer, A.2    Et Al., D.J.3
  • 9
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • 0850.62538 1379242
    • Tibshirani R. Regression shrinkage and selection via the lasso. J. Royal Statistical Society, Series B, 1996, 58(1): 267-288.
    • (1996) J. Royal Statistical Society, Series B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 10
    • 34547830852 scopus 로고    scopus 로고
    • Gene selection via the BAHSIC family of algorithms
    • DOI 10.1093/bioinformatics/btm216
    • Song L, Bedo J, Borgwardt K M et al. Gene selection via the BAHSIC family of algorithms. Bioinformatics, 2007, 23(3): i490-i498. (Pubitemid 47244436)
    • (2007) Bioinformatics , vol.23 , Issue.13
    • Song, L.1    Bedo, J.2    Borgwardt, K.M.3    Gretton, A.4    Smola, A.5
  • 12
    • 58049141286 scopus 로고    scopus 로고
    • FAST: A ROC-based feature selection metric for small samples and imbalanced data classification problems
    • August
    • Chen X W, Wasikowski M. FAST: A ROC-based feature selection metric for small samples and imbalanced data classification problems. In Proc. The 14th KDD, August 2008, pp.124-132.
    • (2008) Proc. The 14th KDD , pp. 124-132
    • Chen, X.W.1    Wasikowski, M.2
  • 13
    • 17444413786 scopus 로고    scopus 로고
    • An effective and efficient algorithm for high-dimensional outlier detection
    • DOI 10.1007/s00778-004-0125-5
    • Aggarwal C, Yu S. An effective and efficient algorithm for high-dimensional outlier detection. The VLDB Journal, 2005, 14(2): 211-221. (Pubitemid 40536894)
    • (2005) VLDB Journal , vol.14 , Issue.2 , pp. 211-221
    • Aggarwal, C.C.1    Yu, P.S.2
  • 14
    • 84862647152 scopus 로고    scopus 로고
    • Density-preserving projections for large-scale local anomaly detection
    • 10.1007/s10115-011-0430-4
    • de Vries T, Chawla S, Houle M E. Density-preserving projections for large-scale local anomaly detection. Knowledge and Information Systems, 2012, 32(1): 25-52.
    • (2012) Knowledge and Information Systems , vol.32 , Issue.1 , pp. 25-52
    • De Vries, T.1    Chawla, S.2    Houle, M.E.3
  • 15
  • 16
    • 78651496720 scopus 로고    scopus 로고
    • Statistical outlier detection using direct density ratio estimation
    • 10.1007/s10115-010-0283-2
    • Hido S, Tsuboi Y, Kashima H et al. Statistical outlier detection using direct density ratio estimation. Knowledge and Information Systems, 2011, 26(2): 309-336.
    • (2011) Knowledge and Information Systems , vol.26 , Issue.2 , pp. 309-336
    • Hido, S.1    Tsuboi, Y.2    Kashima, H.3
  • 17
    • 79251612332 scopus 로고    scopus 로고
    • Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search
    • 10.1016/j.neunet.2010.10.005 1217.68188
    • Sugiyama M, Yamada M, von Bünau P et al. Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search. Neural Networks, 2011, 24(2): 183-198.
    • (2011) Neural Networks , vol.24 , Issue.2 , pp. 183-198
    • Sugiyama, M.1    Yamada, M.2    Von Bünau, P.3
  • 19
    • 0004235843 scopus 로고
    • Chapman and Hall London, New York 10.1007/978-94-015-3994-4 0438.62022
    • Hawkins D M. Identification of Outliers. London, New York: Chapman and Hall, 1980.
    • (1980) Identification of Outliers
    • Hawkins, D.M.1
  • 20
    • 0039253819 scopus 로고    scopus 로고
    • LOF: Identifying density-based local outliers
    • 10.1145/335191.335388
    • Breunig M M, Kriegel H P, Ng R T et al. LOF: Identifying density-based local outliers. ACM SIGMOD Record, 2000, 29(2): 93-104.
    • (2000) ACM SIGMOD Record , vol.29 , Issue.2 , pp. 93-104
    • Breunig, M.M.1    Kriegel, H.P.2    Ng, R.T.3
  • 21
    • 0004151494 scopus 로고
    • Cambridge University Press Cambridge, New York 10.1017/CBO9780511810817 0576.15001
    • Horn R A, Johnson C R. Matrix Analysis. Cambridge, New York: Cambridge University Press, 1985.
    • (1985) Matrix Analysis
    • Horn, R.A.1    Johnson, C.R.2
  • 23
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • 10.1214/aoms/1177704472 0116.11302 143282
    • Parzen E. On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 1962, 33(3): 1065-1076.
    • (1962) The Annals of Mathematical Statistics , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 24
    • 0001529784 scopus 로고
    • Remarks on some nonparametric estimates of a density function
    • 10.1214/aoms/1177728190 0073.14602 79873
    • Rosenblatt M. Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, 1956, 27(3): 832-837.
    • (1956) The Annals of Mathematical Statistics , vol.27 , Issue.3 , pp. 832-837
    • Rosenblatt, M.1
  • 26
    • 77956531771 scopus 로고    scopus 로고
    • From transformation-based dimensionality reduction to feature selection
    • June
    • Masaeli M, Fung G, Dy J G. From transformation-based dimensionality reduction to feature selection. In Proc. The 27th ICML, June 2010, pp.751-758.
    • (2010) Proc. The 27th ICML , pp. 751-758
    • Masaeli, M.1    Fung, G.2    Dy, J.G.3
  • 28
    • 84955245129 scopus 로고    scopus 로고
    • Multi-probe LSH: Efficient indexing for high-dimensional similarity search
    • Sept
    • Lv Q, Josephson W, Wang Z et al. Multi-probe LSH: Efficient indexing for high-dimensional similarity search. In Proc. The 33rd VLDB, Sept. 2007, pp.950-961.
    • (2007) Proc. The 33rd VLDB , pp. 950-961
    • Lv, Q.1    Josephson, W.2    Et Al., W.Z.3
  • 29
    • 0032201716 scopus 로고    scopus 로고
    • An optimal algorithm for approximate nearest neighbor searching fixed dimensions
    • 10.1145/293347.293348 1065.68650 1678846
    • Arya S, Mount D M, Netanyahu N S et al. An optimal algorithm for approximate nearest neighbor searching fixed dimensions. Journal of the ACM, 1998, 45(6): 891-923.
    • (1998) Journal of the ACM , vol.45 , Issue.6 , pp. 891-923
    • Arya, S.1    Mount, D.M.2    Netanyahu, N.S.3
  • 32
    • 0031333560 scopus 로고    scopus 로고
    • A supervised machine learning algorithm for arrhythmia analysis
    • September
    • Güvenir H A, Acar B, Demiröz G et al. A supervised machine learning algorithm for arrhythmia analysis. In Proc. Computers in Cardiology Conference, September 1998, pp.433-436.
    • (1998) Proc. Computers in Cardiology Conference , pp. 433-436
    • Güvenir, H.A.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.