-
1
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
10.1162/089976698300017467
-
Schölkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5): 1299-1319.
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.R.3
-
2
-
-
85146422424
-
A practical approach to feature selection
-
July
-
Kira K, Rendell L A. A practical approach to feature selection. In Proc. The 9th ICML, July 1992, pp.249-256.
-
(1992)
Proc. The 9th ICML
, pp. 249-256
-
-
Kira, K.1
Rendell, L.A.2
-
4
-
-
0031381525
-
Wrappers for feature subset selection
-
PII S000437029700043X
-
Kohavi R, John G H. Wrappers for feature subset selection. Artificial Intelligence, 1997, 97(1/2): 273-324. (Pubitemid 127401107)
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
5
-
-
0013326060
-
Feature selection for classification
-
10.1016/S1088-467X(97)00008-5
-
Dash M, Liu H. Feature selection for classification. Intelligent Data Analysis, 1997, 1(1/4): 131-156.
-
(1997)
Intelligent Data Analysis
, vol.1
, Issue.14
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
6
-
-
33745561205
-
An introduction to variable and feature selection
-
1102.68556
-
Guyon I, Elisseeff A. An introduction to variable and feature selection. J. Machine Learning Research, 2003, 3: 1157-1182.
-
(2003)
J. Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
8
-
-
84874042969
-
GPU-accelerated feature selection for outlier detection using the local kernel density ratio
-
December
-
Azmandian F, Yilmazer A, Dy J et al. GPU-accelerated feature selection for outlier detection using the local kernel density ratio. In Proc. The 12th ICDM, December 2012, pp.51-60.
-
(2012)
Proc. The 12th ICDM
, pp. 51-60
-
-
Azmandian, F.1
Yilmazer, A.2
Et Al., D.J.3
-
9
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
0850.62538 1379242
-
Tibshirani R. Regression shrinkage and selection via the lasso. J. Royal Statistical Society, Series B, 1996, 58(1): 267-288.
-
(1996)
J. Royal Statistical Society, Series B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
10
-
-
34547830852
-
Gene selection via the BAHSIC family of algorithms
-
DOI 10.1093/bioinformatics/btm216
-
Song L, Bedo J, Borgwardt K M et al. Gene selection via the BAHSIC family of algorithms. Bioinformatics, 2007, 23(3): i490-i498. (Pubitemid 47244436)
-
(2007)
Bioinformatics
, vol.23
, Issue.13
-
-
Song, L.1
Bedo, J.2
Borgwardt, K.M.3
Gretton, A.4
Smola, A.5
-
11
-
-
84875452657
-
Online feature selection with streaming features
-
10.1109/TPAMI.2012.197
-
Wu X, Yu K, Ding W et al. Online feature selection with streaming features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(5): 1178-1192.
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.5
, pp. 1178-1192
-
-
Wu, X.1
Yu, K.2
Ding, W.3
-
12
-
-
58049141286
-
FAST: A ROC-based feature selection metric for small samples and imbalanced data classification problems
-
August
-
Chen X W, Wasikowski M. FAST: A ROC-based feature selection metric for small samples and imbalanced data classification problems. In Proc. The 14th KDD, August 2008, pp.124-132.
-
(2008)
Proc. The 14th KDD
, pp. 124-132
-
-
Chen, X.W.1
Wasikowski, M.2
-
13
-
-
17444413786
-
An effective and efficient algorithm for high-dimensional outlier detection
-
DOI 10.1007/s00778-004-0125-5
-
Aggarwal C, Yu S. An effective and efficient algorithm for high-dimensional outlier detection. The VLDB Journal, 2005, 14(2): 211-221. (Pubitemid 40536894)
-
(2005)
VLDB Journal
, vol.14
, Issue.2
, pp. 211-221
-
-
Aggarwal, C.C.1
Yu, P.S.2
-
14
-
-
84862647152
-
Density-preserving projections for large-scale local anomaly detection
-
10.1007/s10115-011-0430-4
-
de Vries T, Chawla S, Houle M E. Density-preserving projections for large-scale local anomaly detection. Knowledge and Information Systems, 2012, 32(1): 25-52.
-
(2012)
Knowledge and Information Systems
, vol.32
, Issue.1
, pp. 25-52
-
-
De Vries, T.1
Chawla, S.2
Houle, M.E.3
-
15
-
-
84872353254
-
In-network outlier detection in wireless sensor networks
-
10.1007/s10115-011-0474-5
-
Branch J W, Giannella C, Szymanski B K et al. In-network outlier detection in wireless sensor networks. Knowledge and Information Systems, 2013, 34(1): 23-54.
-
(2013)
Knowledge and Information Systems
, vol.34
, Issue.1
, pp. 23-54
-
-
Branch, J.W.1
Giannella, C.2
Szymanski, B.K.3
-
16
-
-
78651496720
-
Statistical outlier detection using direct density ratio estimation
-
10.1007/s10115-010-0283-2
-
Hido S, Tsuboi Y, Kashima H et al. Statistical outlier detection using direct density ratio estimation. Knowledge and Information Systems, 2011, 26(2): 309-336.
-
(2011)
Knowledge and Information Systems
, vol.26
, Issue.2
, pp. 309-336
-
-
Hido, S.1
Tsuboi, Y.2
Kashima, H.3
-
17
-
-
79251612332
-
Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search
-
10.1016/j.neunet.2010.10.005 1217.68188
-
Sugiyama M, Yamada M, von Bünau P et al. Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search. Neural Networks, 2011, 24(2): 183-198.
-
(2011)
Neural Networks
, vol.24
, Issue.2
, pp. 183-198
-
-
Sugiyama, M.1
Yamada, M.2
Von Bünau, P.3
-
19
-
-
0004235843
-
-
Chapman and Hall London, New York 10.1007/978-94-015-3994-4 0438.62022
-
Hawkins D M. Identification of Outliers. London, New York: Chapman and Hall, 1980.
-
(1980)
Identification of Outliers
-
-
Hawkins, D.M.1
-
20
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
10.1145/335191.335388
-
Breunig M M, Kriegel H P, Ng R T et al. LOF: Identifying density-based local outliers. ACM SIGMOD Record, 2000, 29(2): 93-104.
-
(2000)
ACM SIGMOD Record
, vol.29
, Issue.2
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.P.2
Ng, R.T.3
-
21
-
-
0004151494
-
-
Cambridge University Press Cambridge, New York 10.1017/CBO9780511810817 0576.15001
-
Horn R A, Johnson C R. Matrix Analysis. Cambridge, New York: Cambridge University Press, 1985.
-
(1985)
Matrix Analysis
-
-
Horn, R.A.1
Johnson, C.R.2
-
23
-
-
0001473437
-
On estimation of a probability density function and mode
-
10.1214/aoms/1177704472 0116.11302 143282
-
Parzen E. On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 1962, 33(3): 1065-1076.
-
(1962)
The Annals of Mathematical Statistics
, vol.33
, Issue.3
, pp. 1065-1076
-
-
Parzen, E.1
-
24
-
-
0001529784
-
Remarks on some nonparametric estimates of a density function
-
10.1214/aoms/1177728190 0073.14602 79873
-
Rosenblatt M. Remarks on some nonparametric estimates of a density function. The Annals of Mathematical Statistics, 1956, 27(3): 832-837.
-
(1956)
The Annals of Mathematical Statistics
, vol.27
, Issue.3
, pp. 832-837
-
-
Rosenblatt, M.1
-
26
-
-
77956531771
-
From transformation-based dimensionality reduction to feature selection
-
June
-
Masaeli M, Fung G, Dy J G. From transformation-based dimensionality reduction to feature selection. In Proc. The 27th ICML, June 2010, pp.751-758.
-
(2010)
Proc. The 27th ICML
, pp. 751-758
-
-
Masaeli, M.1
Fung, G.2
Dy, J.G.3
-
28
-
-
84955245129
-
Multi-probe LSH: Efficient indexing for high-dimensional similarity search
-
Sept
-
Lv Q, Josephson W, Wang Z et al. Multi-probe LSH: Efficient indexing for high-dimensional similarity search. In Proc. The 33rd VLDB, Sept. 2007, pp.950-961.
-
(2007)
Proc. The 33rd VLDB
, pp. 950-961
-
-
Lv, Q.1
Josephson, W.2
Et Al., W.Z.3
-
29
-
-
0032201716
-
An optimal algorithm for approximate nearest neighbor searching fixed dimensions
-
10.1145/293347.293348 1065.68650 1678846
-
Arya S, Mount D M, Netanyahu N S et al. An optimal algorithm for approximate nearest neighbor searching fixed dimensions. Journal of the ACM, 1998, 45(6): 891-923.
-
(1998)
Journal of the ACM
, vol.45
, Issue.6
, pp. 891-923
-
-
Arya, S.1
Mount, D.M.2
Netanyahu, N.S.3
-
32
-
-
0031333560
-
A supervised machine learning algorithm for arrhythmia analysis
-
September
-
Güvenir H A, Acar B, Demiröz G et al. A supervised machine learning algorithm for arrhythmia analysis. In Proc. Computers in Cardiology Conference, September 1998, pp.433-436.
-
(1998)
Proc. Computers in Cardiology Conference
, pp. 433-436
-
-
Güvenir, H.A.A.1
|