-
1
-
-
0039253819
-
Lof: identifying density-based local outliers
-
Breunig MM, Kriegel H-P, Ng RT, Sander J (2000) Lof: identifying density-based local outliers. SIGMOD Rec 29(2): 93-104.
-
(2000)
SIGMOD Rec
, vol.29
, Issue.2
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.-P.2
Ng, R.T.3
Sander, J.4
-
2
-
-
0004236492
-
-
3rd edn., Baltimore, MD, USA: Johns Hopkins University Press
-
Golub GH, van Loan CF (1996) Matrix computations. 3rd edn. Johns Hopkins University Press, Baltimore, MD, USA.
-
(1996)
Matrix Computations
-
-
Golub, G.H.1
van Loan, C.F.2
-
3
-
-
0034133513
-
Distance-based outliers: algorithms and applications
-
Knorr EM, Ng RT, Tucakov V (2000) Distance-based outliers: algorithms and applications. VLDB J 8(3-4): 237-253.
-
(2000)
VLDB J
, vol.8
, Issue.3-4
, pp. 237-253
-
-
Knorr, E.M.1
Ng, R.T.2
Tucakov, V.3
-
7
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum JB, Silva Vd, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500): 2319-2323.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
Silva, V.2
Langford, J.C.3
-
10
-
-
73849087914
-
Outlier detection in axis-parallel subspaces of high dimensional data
-
Bangkok, Thailand
-
Kriegel H-P, Kröger P, Schubert E, Zimek A (2009) Outlier detection in axis-parallel subspaces of high dimensional data. In: Proceedings of the 13th Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Bangkok, Thailand.
-
(2009)
Proceedings of the 13th Pacific-Asia conference on knowledge discovery and data mining (PAKDD)
-
-
Kriegel, H.-P.1
Kröger, P.2
Schubert, E.3
Zimek, A.4
-
12
-
-
33749316703
-
Detecting outlying subspaces for high-dimensional data: the new task, algorithms, and performance
-
Zhang J, Wang H (2006) Detecting outlying subspaces for high-dimensional data: the new task, algorithms, and performance. Knowl Inform Syst 10: 333-355.
-
(2006)
Knowl Inform Syst
, vol.10
, pp. 333-355
-
-
Zhang, J.1
Wang, H.2
-
13
-
-
33645548899
-
Slom: a new measure for local spatial outliers
-
Chawla S, Sun P (2006) Slom: a new measure for local spatial outliers. Knowl Inform Syst 9(4): 412-429.
-
(2006)
Knowl Inform Syst
, vol.9
, Issue.4
, pp. 412-429
-
-
Chawla, S.1
Sun, P.2
-
14
-
-
33845323774
-
Detecting anomalies in cross-classified streams: a bayesian approach
-
Agarwal D (2007) Detecting anomalies in cross-classified streams: a bayesian approach. Knowl Inform Syst 11(1): 29-44.
-
(2007)
Knowl Inform Syst
, vol.11
, Issue.1
, pp. 29-44
-
-
Agarwal, D.1
-
15
-
-
33645552151
-
Finding centric local outliers in categorical/numerical spaces
-
Yu JX, Qian W, Lu H, Zhou A (2006) Finding centric local outliers in categorical/numerical spaces. Knowl Inform Syst 9: 309-338.
-
(2006)
Knowl Inform Syst
, vol.9
, pp. 309-338
-
-
Yu, J.X.1
Qian, W.2
Lu, H.3
Zhou, A.4
-
16
-
-
33845240405
-
Capabilities of outlier detection schemes in large datasets, framework and methodologies
-
Tang J, Chen Z, Fu AW, Cheung DW (2006) Capabilities of outlier detection schemes in large datasets, framework and methodologies. Knowl Inform Syst 11: 45-84.
-
(2006)
Knowl Inform Syst
, vol.11
, pp. 45-84
-
-
Tang, J.1
Chen, Z.2
Fu, A.W.3
Cheung, D.W.4
-
18
-
-
28444491040
-
Fast approximate similarity search in extremely high-dimensional data sets
-
Houle ME, Sakuma J (2005) Fast approximate similarity search in extremely high-dimensional data sets. In: ICDE, pp 619-630.
-
(2005)
ICDE
, pp. 619-630
-
-
Houle, M.E.1
Sakuma, J.2
-
19
-
-
34248183970
-
Fast principal component analysis using fixed-point algorithm
-
Sharma A, Paliwal KK (2007) Fast principal component analysis using fixed-point algorithm. Pattern Recogn Lett 28(10): 1151-1155.
-
(2007)
Pattern Recogn Lett
, vol.28
, Issue.10
, pp. 1151-1155
-
-
Sharma, A.1
Paliwal, K.K.2
-
20
-
-
38449115187
-
Reducing high-dimensional data by principal component analysis vs. random projection for nearest neighbor classification
-
IEEE Computer Society, Washington, DC
-
Deegalla S, Bostrom H (2006) Reducing high-dimensional data by principal component analysis vs. random projection for nearest neighbor classification. In: ICMLA '06: Proceedings of the 5th international conference on machine learning and applications. IEEE Computer Society, Washington, DC, pp 245-250.
-
(2006)
ICMLA '06: Proceedings of the 5th international conference on machine learning and applications
, pp. 245-250
-
-
Deegalla, S.1
Bostrom, H.2
|