메뉴 건너뛰기




Volumn 32, Issue 1, 2012, Pages 25-52

Density-preserving projections for large-scale local anomaly detection

Author keywords

Anomaly detection; Dimensionality reduction

Indexed keywords


EID: 84862647152     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-011-0430-4     Document Type: Article
Times cited : (45)

References (26)
  • 1
  • 2
    • 0004236492 scopus 로고    scopus 로고
    • 3rd edn., Baltimore, MD, USA: Johns Hopkins University Press
    • Golub GH, van Loan CF (1996) Matrix computations. 3rd edn. Johns Hopkins University Press, Baltimore, MD, USA.
    • (1996) Matrix Computations
    • Golub, G.H.1    van Loan, C.F.2
  • 3
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based outliers: algorithms and applications
    • Knorr EM, Ng RT, Tucakov V (2000) Distance-based outliers: algorithms and applications. VLDB J 8(3-4): 237-253.
    • (2000) VLDB J , vol.8 , Issue.3-4 , pp. 237-253
    • Knorr, E.M.1    Ng, R.T.2    Tucakov, V.3
  • 7
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum JB, Silva Vd, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500): 2319-2323.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    Silva, V.2    Langford, J.C.3
  • 12
    • 33749316703 scopus 로고    scopus 로고
    • Detecting outlying subspaces for high-dimensional data: the new task, algorithms, and performance
    • Zhang J, Wang H (2006) Detecting outlying subspaces for high-dimensional data: the new task, algorithms, and performance. Knowl Inform Syst 10: 333-355.
    • (2006) Knowl Inform Syst , vol.10 , pp. 333-355
    • Zhang, J.1    Wang, H.2
  • 13
    • 33645548899 scopus 로고    scopus 로고
    • Slom: a new measure for local spatial outliers
    • Chawla S, Sun P (2006) Slom: a new measure for local spatial outliers. Knowl Inform Syst 9(4): 412-429.
    • (2006) Knowl Inform Syst , vol.9 , Issue.4 , pp. 412-429
    • Chawla, S.1    Sun, P.2
  • 14
    • 33845323774 scopus 로고    scopus 로고
    • Detecting anomalies in cross-classified streams: a bayesian approach
    • Agarwal D (2007) Detecting anomalies in cross-classified streams: a bayesian approach. Knowl Inform Syst 11(1): 29-44.
    • (2007) Knowl Inform Syst , vol.11 , Issue.1 , pp. 29-44
    • Agarwal, D.1
  • 15
    • 33645552151 scopus 로고    scopus 로고
    • Finding centric local outliers in categorical/numerical spaces
    • Yu JX, Qian W, Lu H, Zhou A (2006) Finding centric local outliers in categorical/numerical spaces. Knowl Inform Syst 9: 309-338.
    • (2006) Knowl Inform Syst , vol.9 , pp. 309-338
    • Yu, J.X.1    Qian, W.2    Lu, H.3    Zhou, A.4
  • 16
    • 33845240405 scopus 로고    scopus 로고
    • Capabilities of outlier detection schemes in large datasets, framework and methodologies
    • Tang J, Chen Z, Fu AW, Cheung DW (2006) Capabilities of outlier detection schemes in large datasets, framework and methodologies. Knowl Inform Syst 11: 45-84.
    • (2006) Knowl Inform Syst , vol.11 , pp. 45-84
    • Tang, J.1    Chen, Z.2    Fu, A.W.3    Cheung, D.W.4
  • 18
    • 28444491040 scopus 로고    scopus 로고
    • Fast approximate similarity search in extremely high-dimensional data sets
    • Houle ME, Sakuma J (2005) Fast approximate similarity search in extremely high-dimensional data sets. In: ICDE, pp 619-630.
    • (2005) ICDE , pp. 619-630
    • Houle, M.E.1    Sakuma, J.2
  • 19
    • 34248183970 scopus 로고    scopus 로고
    • Fast principal component analysis using fixed-point algorithm
    • Sharma A, Paliwal KK (2007) Fast principal component analysis using fixed-point algorithm. Pattern Recogn Lett 28(10): 1151-1155.
    • (2007) Pattern Recogn Lett , vol.28 , Issue.10 , pp. 1151-1155
    • Sharma, A.1    Paliwal, K.K.2
  • 20
    • 38449115187 scopus 로고    scopus 로고
    • Reducing high-dimensional data by principal component analysis vs. random projection for nearest neighbor classification
    • IEEE Computer Society, Washington, DC
    • Deegalla S, Bostrom H (2006) Reducing high-dimensional data by principal component analysis vs. random projection for nearest neighbor classification. In: ICMLA '06: Proceedings of the 5th international conference on machine learning and applications. IEEE Computer Society, Washington, DC, pp 245-250.
    • (2006) ICMLA '06: Proceedings of the 5th international conference on machine learning and applications , pp. 245-250
    • Deegalla, S.1    Bostrom, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.