-
1
-
-
44449088312
-
Bacillus anthracis: balancing innocent research with dual-use potential
-
Hudson M.J., et al. Bacillus anthracis: balancing innocent research with dual-use potential. Int. J. Med. Microbiol. 2008, 298:345-364.
-
(2008)
Int. J. Med. Microbiol.
, vol.298
, pp. 345-364
-
-
Hudson, M.J.1
-
2
-
-
84884875174
-
Anthrax lethal factor
-
Academic Press, N.D. Rawlings, G.S. Salvesen (Eds.)
-
Leppla S.H. Anthrax lethal factor. Handbook of Proteolytic Enzymes 2013, 1257-1261. Academic Press. 3rd edn. N.D. Rawlings, G.S. Salvesen (Eds.).
-
(2013)
Handbook of Proteolytic Enzymes
, pp. 1257-1261
-
-
Leppla, S.H.1
-
3
-
-
33645870427
-
Regulatory networks for virulence and persistence of Bacillus anthracis
-
Fouet A., Mock M. Regulatory networks for virulence and persistence of Bacillus anthracis. Curr. Opin. Microbiol. 2006, 9:160-166.
-
(2006)
Curr. Opin. Microbiol.
, vol.9
, pp. 160-166
-
-
Fouet, A.1
Mock, M.2
-
4
-
-
0036709958
-
The alveolar macrophage: the Trojan horse of Bacillus anthracis
-
Guidi-Rontani C. The alveolar macrophage: the Trojan horse of Bacillus anthracis. Trends Microbiol. 2002, 10:405.
-
(2002)
Trends Microbiol.
, vol.10
, pp. 405
-
-
Guidi-Rontani, C.1
-
5
-
-
84872022925
-
In vivo germination of Bacillus anthracis spores during murine cutaneous infection
-
Corre J.P., et al. In vivo germination of Bacillus anthracis spores during murine cutaneous infection. J. Infect. Dis. 2013, 207:450-457.
-
(2013)
J. Infect. Dis.
, vol.207
, pp. 450-457
-
-
Corre, J.P.1
-
6
-
-
84155164753
-
Lipoprotein biosynthesis by prolipoprotein diacylglyceryl transferase is required for efficient spore germination and full virulence of Bacillus anthracis
-
Okugawa S., et al. Lipoprotein biosynthesis by prolipoprotein diacylglyceryl transferase is required for efficient spore germination and full virulence of Bacillus anthracis. Mol. Microbiol. 2012, 83:96-109.
-
(2012)
Mol. Microbiol.
, vol.83
, pp. 96-109
-
-
Okugawa, S.1
-
7
-
-
84861133677
-
Updating perspectives on the initiation of Bacillus anthracis growth and dissemination through Its host
-
Weiner Z.P., Glomski I.J. Updating perspectives on the initiation of Bacillus anthracis growth and dissemination through Its host. Infect. Immun. 2012, 80:1626-1633.
-
(2012)
Infect. Immun.
, vol.80
, pp. 1626-1633
-
-
Weiner, Z.P.1
Glomski, I.J.2
-
9
-
-
69349098830
-
The protective antigen component of anthrax toxin forms functional octameric complexes
-
Kintzer A.F., et al. The protective antigen component of anthrax toxin forms functional octameric complexes. J. Mol. Biol. 2009, 392:614-629.
-
(2009)
J. Mol. Biol.
, vol.392
, pp. 614-629
-
-
Kintzer, A.F.1
-
10
-
-
84875994652
-
Engineering anthrax toxin variants that exclusively form octamers, and their application to targeting tumors
-
Phillips D.D., et al. Engineering anthrax toxin variants that exclusively form octamers, and their application to targeting tumors. J. Biol. Chem. 2013, 288:9058-9065.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 9058-9065
-
-
Phillips, D.D.1
-
11
-
-
34447291354
-
Anthrax toxin: receptor-binding, internalization, pore formation, and translocation
-
Young J.A., Collier R.J. Anthrax toxin: receptor-binding, internalization, pore formation, and translocation. Annu. Rev. Biochem. 2007, 76:243-265.
-
(2007)
Annu. Rev. Biochem.
, vol.76
, pp. 243-265
-
-
Young, J.A.1
Collier, R.J.2
-
12
-
-
0037415611
-
Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process
-
Abrami L., et al. Anthrax toxin triggers endocytosis of its receptor via a lipid raft-mediated clathrin-dependent process. J. Cell Biol. 2003, 160:321-328.
-
(2003)
J. Cell Biol.
, vol.160
, pp. 321-328
-
-
Abrami, L.1
-
13
-
-
70350708307
-
Membrane translocation by anthrax toxin
-
Collier R.J. Membrane translocation by anthrax toxin. Mol. Aspects Med. 2009, 30:413-422.
-
(2009)
Mol. Aspects Med.
, vol.30
, pp. 413-422
-
-
Collier, R.J.1
-
14
-
-
70350728404
-
Receptors of anthrax toxin and cell entry
-
Van Der Goot G., Young J.A. Receptors of anthrax toxin and cell entry. Mol. Aspects Med. 2009, 30:406-412.
-
(2009)
Mol. Aspects Med.
, vol.30
, pp. 406-412
-
-
Van Der Goot, G.1
Young, J.A.2
-
15
-
-
0013159236
-
Cell surface tumor endothelium marker 8 cytoplasmic tail-independent anthrax toxin binding, proteolytic processing, oligomer formation, and internalization
-
Liu S., Leppla S.H. Cell surface tumor endothelium marker 8 cytoplasmic tail-independent anthrax toxin binding, proteolytic processing, oligomer formation, and internalization. J. Biol. Chem. 2003, 278:5227-5234.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 5227-5234
-
-
Liu, S.1
Leppla, S.H.2
-
16
-
-
0035829509
-
Identification of the cellular receptor for anthrax toxin
-
Bradley K.A., et al. Identification of the cellular receptor for anthrax toxin. Nature 2001, 414:225-229.
-
(2001)
Nature
, vol.414
, pp. 225-229
-
-
Bradley, K.A.1
-
17
-
-
0038303163
-
Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor
-
Scobie H.M., et al. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:5170-5174.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 5170-5174
-
-
Scobie, H.M.1
-
18
-
-
79955020782
-
Targeting the anthrax receptors, TEM-8 and CMG-2, for anti-angiogenic therapy
-
Cryan L.M., Rogers M.S. Targeting the anthrax receptors, TEM-8 and CMG-2, for anti-angiogenic therapy. Front. Biosci. 2011, 16:1574-1588.
-
(2011)
Front. Biosci.
, vol.16
, pp. 1574-1588
-
-
Cryan, L.M.1
Rogers, M.S.2
-
19
-
-
84863012047
-
TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types
-
Chaudhary A., et al. TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell 2012, 21:212-226.
-
(2012)
Cancer Cell
, vol.21
, pp. 212-226
-
-
Chaudhary, A.1
-
20
-
-
0034870220
-
Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling
-
Bell S.E., et al. Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J. Cell Sci. 2001, 114:2755-2773.
-
(2001)
J. Cell Sci.
, vol.114
, pp. 2755-2773
-
-
Bell, S.E.1
-
21
-
-
84855362193
-
The dark sides of capillary morphogenesis gene 2
-
Deuquet J., et al. The dark sides of capillary morphogenesis gene 2. EMBO J. 2012, 31:3-13.
-
(2012)
EMBO J.
, vol.31
, pp. 3-13
-
-
Deuquet, J.1
-
22
-
-
84877585862
-
Mutations in ANTXR1 cause GAPO syndrome
-
Stranecky V., et al. Mutations in ANTXR1 cause GAPO syndrome. Am. J. Hum. Genet. 2013, 92:792-799.
-
(2013)
Am. J. Hum. Genet.
, vol.92
, pp. 792-799
-
-
Stranecky, V.1
-
23
-
-
68049120477
-
Host-derived tumor endothelial marker 8 promotes the growth of melanoma
-
Cullen M., et al. Host-derived tumor endothelial marker 8 promotes the growth of melanoma. Cancer Res. 2009, 69:6021-6026.
-
(2009)
Cancer Res.
, vol.69
, pp. 6021-6026
-
-
Cullen, M.1
-
24
-
-
68149175255
-
Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo
-
Liu S., et al. Capillary morphogenesis protein-2 is the major receptor mediating lethality of anthrax toxin in vivo. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:12424-12429.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 12424-12429
-
-
Liu, S.1
-
25
-
-
84859856438
-
Anthrax toxin receptor 2 functions in ECM homeostasis of the murine reproductive tract and promotes MMP activity
-
Reeves C.V., et al. Anthrax toxin receptor 2 functions in ECM homeostasis of the murine reproductive tract and promotes MMP activity. PLoS ONE 2012, 7:e34862.
-
(2012)
PLoS ONE
, vol.7
-
-
Reeves, C.V.1
-
26
-
-
84861928877
-
Capillary morphogenesis protein-2 is required for mouse parturition by maintaining uterine collagen homeostasis
-
Peters D.E., et al. Capillary morphogenesis protein-2 is required for mouse parturition by maintaining uterine collagen homeostasis. Biochem. Biophys. Res. Commun. 2012, 422:393-397.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.422
, pp. 393-397
-
-
Peters, D.E.1
-
27
-
-
84872199276
-
The receptors that mediate the direct lethality of anthrax toxin
-
Liu S., et al. The receptors that mediate the direct lethality of anthrax toxin. Toxins (Basel) 2012, 5:1-8.
-
(2012)
Toxins (Basel)
, vol.5
, pp. 1-8
-
-
Liu, S.1
-
28
-
-
77957285963
-
Heterodimeric integrin complexes containing β1-integrin promote internalization and lethality of anthrax toxin
-
Martchenko M., et al. Heterodimeric integrin complexes containing β1-integrin promote internalization and lethality of anthrax toxin. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:15583-15588.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 15583-15588
-
-
Martchenko, M.1
-
29
-
-
33646019842
-
The LDL receptor-related protein LRP6 mediates internalization and lethality of anthrax toxin
-
Wei W., et al. The LDL receptor-related protein LRP6 mediates internalization and lethality of anthrax toxin. Cell 2006, 124:1141-1154.
-
(2006)
Cell
, vol.124
, pp. 1141-1154
-
-
Wei, W.1
-
30
-
-
34047224102
-
LRP5 and LRP6 are not required for protective antigen-mediated internalization or lethality of anthrax lethal toxin
-
Young J.J., et al. LRP5 and LRP6 are not required for protective antigen-mediated internalization or lethality of anthrax lethal toxin. PLoS Pathog. 2007, 3:e27.
-
(2007)
PLoS Pathog.
, vol.3
-
-
Young, J.J.1
-
31
-
-
46349085722
-
Evidence against a human cell-specific role for LRP6 in anthrax toxin entry
-
Ryan P.L., Young J.A. Evidence against a human cell-specific role for LRP6 in anthrax toxin entry. PLoS ONE 2008, 3:e1817.
-
(2008)
PLoS ONE
, vol.3
-
-
Ryan, P.L.1
Young, J.A.2
-
32
-
-
35649000008
-
Anthrax protective antigen cleavage and clearance from the blood of mice and rats
-
Moayeri M., et al. Anthrax protective antigen cleavage and clearance from the blood of mice and rats. Infect. Immun. 2007, 75:5175-5184.
-
(2007)
Infect. Immun.
, vol.75
, pp. 5175-5184
-
-
Moayeri, M.1
-
33
-
-
84863736166
-
Binding and cell intoxication studies of anthrax lethal toxin
-
Vuyisich M., et al. Binding and cell intoxication studies of anthrax lethal toxin. Mol. Biol. Rep. 2012, 39:5897-5903.
-
(2012)
Mol. Biol. Rep.
, vol.39
, pp. 5897-5903
-
-
Vuyisich, M.1
-
34
-
-
18244414803
-
Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor
-
Duesbery N.S., et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 1998, 280:734-737.
-
(1998)
Science
, vol.280
, pp. 734-737
-
-
Duesbery, N.S.1
-
35
-
-
79951968708
-
MEK2 Is sufficient but not necessary for proliferation and anchorage-independent growth of SK-MEL-28 melanoma cells
-
Lee C.S., et al. MEK2 Is sufficient but not necessary for proliferation and anchorage-independent growth of SK-MEL-28 melanoma cells. PLoS ONE 2011, 6:e17165.
-
(2011)
PLoS ONE
, vol.6
-
-
Lee, C.S.1
-
36
-
-
0032581369
-
Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages
-
Vitale G., et al. Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem. Biophys. Res. Commun. 1998, 248:706-711.
-
(1998)
Biochem. Biophys. Res. Commun.
, vol.248
, pp. 706-711
-
-
Vitale, G.1
-
37
-
-
0034672216
-
Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor
-
Vitale G., et al. Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem. J. 2000, 352:739-745.
-
(2000)
Biochem. J.
, vol.352
, pp. 739-745
-
-
Vitale, G.1
-
38
-
-
18444374405
-
Mutations of the BRAF gene in human cancer
-
Davies H., et al. Mutations of the BRAF gene in human cancer. Nature 2002, 417:949-954.
-
(2002)
Nature
, vol.417
, pp. 949-954
-
-
Davies, H.1
-
39
-
-
84868481873
-
Vemurafenib: the first drug approved for BRAF-mutant cancer
-
Bollag G., et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat. Rev. Drug Discov. 2012, 11:873-886.
-
(2012)
Nat. Rev. Drug Discov.
, vol.11
, pp. 873-886
-
-
Bollag, G.1
-
40
-
-
33644690647
-
BRAF status and mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 activity indicate sensitivity of melanoma cells to anthrax lethal toxin
-
Abi-Habib R.J., et al. BRAF status and mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 activity indicate sensitivity of melanoma cells to anthrax lethal toxin. Mol. Cancer Ther. 2005, 4:1303-1310.
-
(2005)
Mol. Cancer Ther.
, vol.4
, pp. 1303-1310
-
-
Abi-Habib, R.J.1
-
41
-
-
79957842461
-
Efficient targeting of head and neck squamous cell carcinoma by systemic administration of a dual uPA and MMP-activated engineered anthrax toxin
-
Schafer J.M., et al. Efficient targeting of head and neck squamous cell carcinoma by systemic administration of a dual uPA and MMP-activated engineered anthrax toxin. PLoS ONE 2011, 6:e20532.
-
(2011)
PLoS ONE
, vol.6
-
-
Schafer, J.M.1
-
42
-
-
24944464206
-
Intermolecular complementation achieves high-specificity tumor targeting by anthrax toxin
-
Liu S., et al. Intermolecular complementation achieves high-specificity tumor targeting by anthrax toxin. Nat. Biotechnol. 2005, 23:725-730.
-
(2005)
Nat. Biotechnol.
, vol.23
, pp. 725-730
-
-
Liu, S.1
-
43
-
-
38049098266
-
Matrix metalloproteinase-activated anthrax lethal toxin demonstrates high potency in targeting tumor vasculature
-
Liu S., et al. Matrix metalloproteinase-activated anthrax lethal toxin demonstrates high potency in targeting tumor vasculature. J. Biol. Chem. 2008, 283:529-540.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 529-540
-
-
Liu, S.1
-
44
-
-
84874680158
-
Cytotoxicity of anthrax lethal toxin to human acute myeloid leukemia cells is nonapoptotic and dependent on extracellular signal-regulated kinase 1/2 activity
-
Kassab E., et al. Cytotoxicity of anthrax lethal toxin to human acute myeloid leukemia cells is nonapoptotic and dependent on extracellular signal-regulated kinase 1/2 activity. Transl. Oncol. 2013, 6:25-32.
-
(2013)
Transl. Oncol.
, vol.6
, pp. 25-32
-
-
Kassab, E.1
-
45
-
-
77955425957
-
Anthrax lethal toxin activates the inflammasome in sensitive rat macrophages
-
Newman Z.L., et al. Anthrax lethal toxin activates the inflammasome in sensitive rat macrophages. Biochem. Biophys. Res. Commun. 2010, 398:785-789.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.398
, pp. 785-789
-
-
Newman, Z.L.1
-
46
-
-
77954056386
-
Susceptibility to anthrax lethal toxin-induced rat death is controlled by a single chromosome 10 locus that includes rNlrp1
-
Newman Z.L., et al. Susceptibility to anthrax lethal toxin-induced rat death is controlled by a single chromosome 10 locus that includes rNlrp1. PLoS Pathog. 2010, 6:e1000906.
-
(2010)
PLoS Pathog.
, vol.6
-
-
Newman, Z.L.1
-
47
-
-
84861214708
-
Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome
-
Levinsohn J.L., et al. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog. 2012, 8:e1002638.
-
(2012)
PLoS Pathog.
, vol.8
-
-
Levinsohn, J.L.1
-
48
-
-
84869073837
-
Anthrax lethal factor cleaves mouse Nlrp1b in both toxin-sensitive and toxin-resistant macrophages
-
Hellmich K.A., et al. Anthrax lethal factor cleaves mouse Nlrp1b in both toxin-sensitive and toxin-resistant macrophages. PLoS ONE 2012, 7:e49741.
-
(2012)
PLoS ONE
, vol.7
-
-
Hellmich, K.A.1
-
49
-
-
84879508269
-
Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor
-
Chavarria-Smith J., Vance R.E. Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog. 2013, 9:e1003452.
-
(2013)
PLoS Pathog.
, vol.9
-
-
Chavarria-Smith, J.1
Vance, R.E.2
-
50
-
-
85047692288
-
Bacillus anthracis lethal toxin induces TNF-α-independent hypoxia-mediated toxicity in mice
-
Moayeri M., et al. Bacillus anthracis lethal toxin induces TNF-α-independent hypoxia-mediated toxicity in mice. J. Clin. Invest. 2003, 112:670-682.
-
(2003)
J. Clin. Invest.
, vol.112
, pp. 670-682
-
-
Moayeri, M.1
-
51
-
-
3342965783
-
Mouse susceptibility to anthrax lethal toxin is influenced by genetic factors in addition to those controlling macrophage sensitivity
-
Moayeri M., et al. Mouse susceptibility to anthrax lethal toxin is influenced by genetic factors in addition to those controlling macrophage sensitivity. Infect. Immun. 2004, 72:4439-4447.
-
(2004)
Infect. Immun.
, vol.72
, pp. 4439-4447
-
-
Moayeri, M.1
-
52
-
-
78651258397
-
Inflammasome sensor Nlrp1b-dependent resistance to anthrax is mediated by caspase-1, IL-1 signaling and neutrophil recruitment
-
Moayeri M., et al. Inflammasome sensor Nlrp1b-dependent resistance to anthrax is mediated by caspase-1, IL-1 signaling and neutrophil recruitment. PLoS Pathog. 2010, 6:e1001222.
-
(2010)
PLoS Pathog.
, vol.6
-
-
Moayeri, M.1
-
53
-
-
73949099407
-
Cutting edge: resistance to Bacillus anthracis infection mediated by a lethal toxin sensitive allele of Nalp1b/Nlrp1b
-
Terra J.K., et al. Cutting edge: resistance to Bacillus anthracis infection mediated by a lethal toxin sensitive allele of Nalp1b/Nlrp1b. J. Immunol. 2010, 184:17-20.
-
(2010)
J. Immunol.
, vol.184
, pp. 17-20
-
-
Terra, J.K.1
-
54
-
-
27544500820
-
Bacillus anthracis edema toxin causes extensive tissue lesions and rapid lethality in mice
-
Firoved A.M., et al. Bacillus anthracis edema toxin causes extensive tissue lesions and rapid lethality in mice. Am. J. Pathol. 2005, 167:1309-1320.
-
(2005)
Am. J. Pathol.
, vol.167
, pp. 1309-1320
-
-
Firoved, A.M.1
-
55
-
-
84883742626
-
Key tissue targets responsible for anthrax-toxin-induced lethality
-
Liu S., et al. Key tissue targets responsible for anthrax-toxin-induced lethality. Nature 2013, 501:63-68.
-
(2013)
Nature
, vol.501
, pp. 63-68
-
-
Liu, S.1
-
56
-
-
55049122397
-
Ratio of lethal and edema factors in rabbit systemic anthrax
-
Dal Molin F., et al. Ratio of lethal and edema factors in rabbit systemic anthrax. Toxicon 2008, 52:824-828.
-
(2008)
Toxicon
, vol.52
, pp. 824-828
-
-
Dal Molin, F.1
-
57
-
-
33745856268
-
Detection of anthrax toxin in the serum of animals infected with Bacillus anthracis by using engineered immunoassays
-
Mabry R., et al. Detection of anthrax toxin in the serum of animals infected with Bacillus anthracis by using engineered immunoassays. Clin. Vaccine Immunol. 2006, 13:671-677.
-
(2006)
Clin. Vaccine Immunol.
, vol.13
, pp. 671-677
-
-
Mabry, R.1
-
58
-
-
84877633484
-
Cholera: pathophysiology and emerging therapeutic targets
-
Muanprasat C., Chatsudthipong V. Cholera: pathophysiology and emerging therapeutic targets. Future Med. Chem. 2013, 5:781-798.
-
(2013)
Future Med. Chem.
, vol.5
, pp. 781-798
-
-
Muanprasat, C.1
Chatsudthipong, V.2
-
59
-
-
84880939628
-
Exchange protein directly activated by cAMP (Epac): a multidomain cAMP mediator in the regulation of diverse biological functions
-
Schmidt M., et al. Exchange protein directly activated by cAMP (Epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol. Rev. 2013, 65:670-709.
-
(2013)
Pharmacol. Rev.
, vol.65
, pp. 670-709
-
-
Schmidt, M.1
-
60
-
-
72749084368
-
Mouse models of altered protein kinase A signaling
-
Kirschner L.S., et al. Mouse models of altered protein kinase A signaling. Endocr. Relat. Cancer 2009, 16:773-793.
-
(2009)
Endocr. Relat. Cancer
, vol.16
, pp. 773-793
-
-
Kirschner, L.S.1
-
61
-
-
84874732136
-
Enhanced leptin sensitivity, reduced adiposity, and improved glucose homeostasis in mice lacking exchange protein directly activated by cyclic AMP isoform 1
-
Yan J., et al. Enhanced leptin sensitivity, reduced adiposity, and improved glucose homeostasis in mice lacking exchange protein directly activated by cyclic AMP isoform 1. Mol. Cell. Biol. 2013, 33:918-926.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 918-926
-
-
Yan, J.1
-
62
-
-
84891698714
-
Pancreatic beta-cell response to increased metabolic demand and to pharmacologic secretagogues requires EPAC2A
-
Song W.J., et al. Pancreatic beta-cell response to increased metabolic demand and to pharmacologic secretagogues requires EPAC2A. Diabetes 2013, 62:2796-2807.
-
(2013)
Diabetes
, vol.62
, pp. 2796-2807
-
-
Song, W.J.1
-
63
-
-
12244306922
-
Physiological calcium concentrations regulate calmodulin binding and catalysis of adenylyl cyclase exotoxins
-
Shen Y., et al. Physiological calcium concentrations regulate calmodulin binding and catalysis of adenylyl cyclase exotoxins. EMBO J. 2002, 21:6721-6732.
-
(2002)
EMBO J.
, vol.21
, pp. 6721-6732
-
-
Shen, Y.1
-
64
-
-
77957968198
-
Anthrax toxins cooperatively inhibit endocytic recycling by the Rab11/Sec15 exocyst
-
Guichard A., et al. Anthrax toxins cooperatively inhibit endocytic recycling by the Rab11/Sec15 exocyst. Nature 2010, 467:854-858.
-
(2010)
Nature
, vol.467
, pp. 854-858
-
-
Guichard, A.1
-
65
-
-
84883883602
-
Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions
-
Guichard A., et al. Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions. Cell Host Microbe 2013, 14:294-305.
-
(2013)
Cell Host Microbe
, vol.14
, pp. 294-305
-
-
Guichard, A.1
-
66
-
-
33748506107
-
Anthrax oedema toxin induces anthrax toxin receptor expression in monocyte-derived cells
-
Maldonado-Arocho F.J., et al. Anthrax oedema toxin induces anthrax toxin receptor expression in monocyte-derived cells. Mol. Microbiol. 2006, 61:324-337.
-
(2006)
Mol. Microbiol.
, vol.61
, pp. 324-337
-
-
Maldonado-Arocho, F.J.1
-
67
-
-
84863127146
-
Anthrax edema toxin impairs protein clearance in mice
-
Sastalla I., et al. Anthrax edema toxin impairs protein clearance in mice. Infect. Immun. 2011, 80:529-538.
-
(2011)
Infect. Immun.
, vol.80
, pp. 529-538
-
-
Sastalla, I.1
-
68
-
-
84864364923
-
Bacillus anthracis edema factor substrate specificity: Evidence for new modes of action
-
Gottle M., et al. Bacillus anthracis edema factor substrate specificity: Evidence for new modes of action. Toxins (Basel) 2012, 4:505-535.
-
(2012)
Toxins (Basel)
, vol.4
, pp. 505-535
-
-
Gottle, M.1
-
69
-
-
64049107159
-
Anthrax, toxins and vaccines: a 125-year journey targeting Bacillus anthracis
-
Tournier J.N., et al. Anthrax, toxins and vaccines: a 125-year journey targeting Bacillus anthracis. Expert Rev. Anti Infect. Ther. 2009, 7:219-236.
-
(2009)
Expert Rev. Anti Infect. Ther.
, vol.7
, pp. 219-236
-
-
Tournier, J.N.1
-
70
-
-
78349269082
-
Anthrax toxin targeting of myeloid cells through the CMG2 receptor is essential for establishment of Bacillus anthracis infections in mice
-
Liu S., et al. Anthrax toxin targeting of myeloid cells through the CMG2 receptor is essential for establishment of Bacillus anthracis infections in mice. Cell Host Microbe 2010, 8:455-462.
-
(2010)
Cell Host Microbe
, vol.8
, pp. 455-462
-
-
Liu, S.1
-
71
-
-
84896405457
-
Circulating lethal toxin decreases the ability of neutrophils to respond to Bacillus anthracis
-
Weiner Z.P., et al. Circulating lethal toxin decreases the ability of neutrophils to respond to Bacillus anthracis. Cell. Microbiol. 2013, 10.1111/cmi.12232.
-
(2013)
Cell. Microbiol.
-
-
Weiner, Z.P.1
-
72
-
-
79959416404
-
Noninvasive imaging technologies reveal edema toxin as a key virulence factor in anthrax
-
Dumetz F., et al. Noninvasive imaging technologies reveal edema toxin as a key virulence factor in anthrax. Am. J. Pathol. 2011, 178:2523-2535.
-
(2011)
Am. J. Pathol.
, vol.178
, pp. 2523-2535
-
-
Dumetz, F.1
-
73
-
-
70350707926
-
Anthrax toxins: a weapon to systematically dismantle the host immune defenses
-
Tournier J.N., et al. Anthrax toxins: a weapon to systematically dismantle the host immune defenses. Mol. Aspects Med. 2009, 30:456-466.
-
(2009)
Mol. Aspects Med.
, vol.30
, pp. 456-466
-
-
Tournier, J.N.1
-
74
-
-
79952075308
-
Emergence of anthrax edema toxin as a master manipulator of macrophage and B cell functions
-
Gnade B.T., et al. Emergence of anthrax edema toxin as a master manipulator of macrophage and B cell functions. Toxins (Basel) 2010, 2:1881-1897.
-
(2010)
Toxins (Basel)
, vol.2
, pp. 1881-1897
-
-
Gnade, B.T.1
-
75
-
-
33947256514
-
Manipulation of host signalling pathways by anthrax toxins
-
Turk B.E. Manipulation of host signalling pathways by anthrax toxins. Biochem. J. 2007, 402:405-417.
-
(2007)
Biochem. J.
, vol.402
, pp. 405-417
-
-
Turk, B.E.1
-
76
-
-
33747066785
-
Anthrax toxins: a paradigm of bacterial immune suppression
-
Baldari C.T., et al. Anthrax toxins: a paradigm of bacterial immune suppression. Trends Immunol. 2006, 27:434-440.
-
(2006)
Trends Immunol.
, vol.27
, pp. 434-440
-
-
Baldari, C.T.1
-
77
-
-
70350728674
-
Animal models of human anthrax: the quest for the Holy Grail
-
Goossens P.L. Animal models of human anthrax: the quest for the Holy Grail. Mol. Aspects Med. 2009, 30:467-480.
-
(2009)
Mol. Aspects Med.
, vol.30
, pp. 467-480
-
-
Goossens, P.L.1
-
78
-
-
84862573491
-
Impaired function of the Tie-2 receptor contributes to vascular leakage and lethality in anthrax
-
Ghosh C.C., et al. Impaired function of the Tie-2 receptor contributes to vascular leakage and lethality in anthrax. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:10024-10029.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 10024-10029
-
-
Ghosh, C.C.1
-
79
-
-
40649088321
-
Anthrax lethal toxin induces cell death-independent permeability in zebrafish vasculature
-
Bolcome R.E., et al. Anthrax lethal toxin induces cell death-independent permeability in zebrafish vasculature. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:2439-2444.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 2439-2444
-
-
Bolcome, R.E.1
-
80
-
-
67249104566
-
The heart is an early target of anthrax lethal toxin in mice: a protective role for neuronal nitric oxide synthase (nNOS)
-
Moayeri M., et al. The heart is an early target of anthrax lethal toxin in mice: a protective role for neuronal nitric oxide synthase (nNOS). PLoS. Pathog. 2009, 4:e1000456.
-
(2009)
PLoS. Pathog.
, vol.4
-
-
Moayeri, M.1
-
81
-
-
79959681046
-
The effects of anthrax lethal toxin on host barrier function
-
Xie T., et al. The effects of anthrax lethal toxin on host barrier function. Toxins (Basel) 2011, 3:591-607.
-
(2011)
Toxins (Basel)
, vol.3
, pp. 591-607
-
-
Xie, T.1
-
82
-
-
78149487313
-
Neutrophil elastase mediates pathogenic effects of anthrax lethal toxin in the murine intestinal tract
-
Fang H., et al. Neutrophil elastase mediates pathogenic effects of anthrax lethal toxin in the murine intestinal tract. J. Immunol. 2010, 185:5463-5467.
-
(2010)
J. Immunol.
, vol.185
, pp. 5463-5467
-
-
Fang, H.1
-
83
-
-
63849240549
-
Anthrax toxin: pathologic effects on the cardiovascular system
-
Golden H.B., et al. Anthrax toxin: pathologic effects on the cardiovascular system. Front. Biosci. 2009, 14:2335-2357.
-
(2009)
Front. Biosci.
, vol.14
, pp. 2335-2357
-
-
Golden, H.B.1
-
84
-
-
81755180764
-
CAMP signaling by anthrax edema toxin induces transendothelial cell tunnels, which are resealed by MIM via Arp2/3-driven actin polymerization
-
Maddugoda M.P., et al. cAMP signaling by anthrax edema toxin induces transendothelial cell tunnels, which are resealed by MIM via Arp2/3-driven actin polymerization. Cell Host Microbe 2011, 10:464-474.
-
(2011)
Cell Host Microbe
, vol.10
, pp. 464-474
-
-
Maddugoda, M.P.1
-
85
-
-
84880844237
-
The sepsis model: an emerging hypothesis for the lethality of inhalation anthrax
-
Coggeshall K.M., et al. The sepsis model: an emerging hypothesis for the lethality of inhalation anthrax. J. Cell. Mol. Med. 2013, 17:914-920.
-
(2013)
J. Cell. Mol. Med.
, vol.17
, pp. 914-920
-
-
Coggeshall, K.M.1
-
86
-
-
84859046620
-
Novel approaches to the treatment of systemic anthrax
-
Artenstein A.W., Opal S.M. Novel approaches to the treatment of systemic anthrax. Clin. Infect. Dis. 2012, 54:1148-1161.
-
(2012)
Clin. Infect. Dis.
, vol.54
, pp. 1148-1161
-
-
Artenstein, A.W.1
Opal, S.M.2
-
87
-
-
84888432401
-
Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin
-
Abrami L., et al. Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin. Cell Rep. 2013, 5:986-996.
-
(2013)
Cell Rep.
, vol.5
, pp. 986-996
-
-
Abrami, L.1
-
88
-
-
33947390946
-
A case of naturally acquired inhalation anthrax: clinical care and analyses of anti-protective antigen immunoglobulin G and lethal factor
-
Walsh J.J., et al. A case of naturally acquired inhalation anthrax: clinical care and analyses of anti-protective antigen immunoglobulin G and lethal factor. Clin. Infect. Dis. 2007, 44:968-971.
-
(2007)
Clin. Infect. Dis.
, vol.44
, pp. 968-971
-
-
Walsh, J.J.1
-
90
-
-
80052155168
-
Monoclonal antibody therapies against anthrax
-
Chen Z., et al. Monoclonal antibody therapies against anthrax. Toxins 2011, 3:1004-1019.
-
(2011)
Toxins
, vol.3
, pp. 1004-1019
-
-
Chen, Z.1
-
91
-
-
78650638192
-
Recombinant anthrax toxin receptor-Fc fusion proteins produced in plants protect rabbits against inhalational anthrax
-
Wycoff K.L., et al. Recombinant anthrax toxin receptor-Fc fusion proteins produced in plants protect rabbits against inhalational anthrax. Antimicrob. Agents Chemother. 2011, 55:132-139.
-
(2011)
Antimicrob. Agents Chemother.
, vol.55
, pp. 132-139
-
-
Wycoff, K.L.1
-
92
-
-
84882348540
-
Small-molecule inhibitors of lethal factor protease activity protect against anthrax infection
-
Moayeri M., et al. Small-molecule inhibitors of lethal factor protease activity protect against anthrax infection. Antimicrob. Agents Chemother. 2013, 57:4139-4145.
-
(2013)
Antimicrob. Agents Chemother.
, vol.57
, pp. 4139-4145
-
-
Moayeri, M.1
-
93
-
-
1542327666
-
Selective inhibition of anthrax edema factor by adefovir, a drug for chronic hepatitis B virus infection
-
Shen Y., et al. Selective inhibition of anthrax edema factor by adefovir, a drug for chronic hepatitis B virus infection. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:3242-3247.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 3242-3247
-
-
Shen, Y.1
-
94
-
-
84880171842
-
B. anthracis edema toxin increases cAMP levels and inhibits phenylephrine-stimulated contraction in a rat aortic ring model
-
Li Y., et al. B. anthracis edema toxin increases cAMP levels and inhibits phenylephrine-stimulated contraction in a rat aortic ring model. Am. J. Physiol. Heart Circ. Physiol. 2013, 305:H238-H250.
-
(2013)
Am. J. Physiol. Heart Circ. Physiol.
, vol.305
-
-
Li, Y.1
-
95
-
-
77953497798
-
Advances in the development of next-generation anthrax vaccines
-
Friedlander A.M., Little S.F. Advances in the development of next-generation anthrax vaccines. Vaccine 2009, 27(Suppl. 4):D28-D32.
-
(2009)
Vaccine
, vol.27
, Issue.SUPPL. 4
-
-
Friedlander, A.M.1
Little, S.F.2
-
96
-
-
84887742382
-
Anthrax vaccines: present status and future prospects
-
Kaur M., et al. Anthrax vaccines: present status and future prospects. Expert Rev. Vaccines 2013, 12:955-970.
-
(2013)
Expert Rev. Vaccines
, vol.12
, pp. 955-970
-
-
Kaur, M.1
-
97
-
-
84876944573
-
A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge
-
Manish M., et al. A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge. PLoS ONE 2013, 8:e61885.
-
(2013)
PLoS ONE
, vol.8
-
-
Manish, M.1
-
98
-
-
84891827129
-
Deletion modification enhances anthrax specific immunity and protective efficacy of a hepatitis B core particle-based anthrax epitope vaccine
-
Yin Y., et al. Deletion modification enhances anthrax specific immunity and protective efficacy of a hepatitis B core particle-based anthrax epitope vaccine. Immunobiology 2014, 219:97-103.
-
(2014)
Immunobiology
, vol.219
, pp. 97-103
-
-
Yin, Y.1
|